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Abstract

As the Web continues to grow and encompass broader and more diverse sources of

information, providing effective search facilities to users becomes an increasingly chal-

lenging problem. To help users deal with the deluge of Web-accessible information,

we propose a search system which makes use of context to improve search results in

a scalable way. By context, we mean any sources of information, in addition to any

search query, that provide clues about the user’s true information need. For instance,

a user’s bookmarks and search history can be considered a part of the search context.

We consider two types of context-based search. The first type of functionality we

consider is “similarity search.” In this case, as the user is browsing Web pages, URLs

for pages similar to the current page are retrieved and displayed in a side panel. No

query is explicitly issued; context alone (i.e., the page currently being viewed) is used

to provide the user with useful related information. The second type of functionality

involves taking search context into account when ranking results to standard search

queries.

Web search differs from traditional information retrieval tasks in several major

ways, making effective context-sensitive Web search challenging. First, scalability is of

critical importance. With billions of publicly accessible documents, the Web is much

larger than traditional datasets. Similarly, with millions of search queries issued each

day, the query load is much higher than for traditional information retrieval systems.

Second, there are no guarantees on the quality of Web pages, with Web-authors taking

an adversarial, rather than cooperative, approach in attempts to inflate the rankings

of their pages. Third, there is a significant amount of metadata embodied in the link

structure corresponding to the hyperlinks between Web pages that can be exploited

iv



during the retrieval process. In this thesis, we design a search system, using the

Stanford WebBase platform, that exploits the link structure of the Web to provide

scalable, context-sensitive search.
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Chapter 1

Introduction

1.1 Background

Web search engines have become indispensable tools for users seeking information on

the Web. From the perspective of a typical user, a Web search engine is a service

that allows them to enter a short piece of text (the search query) that describes an

information need; the search engine then returns to the user a list of Web pages (the

search results) ordered by how likely they are to satisfy the user’s information need.

For instance, a user who wants to learn more about light bulbs might go to a search

engine and type in “light bulb,” and click on the top few results to find relevant

information.

A Web search engine consists of several components that are necessary to support

this seemingly simple interaction:

Crawler: The crawler is responsible for finding, collecting, and storing as many

publicly accessible Web pages as possible. The collection of pages stored on the

search engine’s server is called a Web-page repository. Crawlers face numerous

challenges, including how to select which pages to crawl, how to efficiently fetch

billions of pages, and how to minimize the impact on the servers hosting these

pages [17].

1



CHAPTER 1. INTRODUCTION 2

Text Indexer: The text indexer is responsible for processing the Web-page

repository collected by the crawler to build an inverted text index that allows

quickly determining which documents in the repository contain a particular

word. Although text indexers are conceptually simple, scaling them to billions

of pages is a challenging task [55, 74].

Auxiliary Indexers: Auxiliary indexers are responsible for constructing ad-

ditional indexes that provide metadata about the pages in the repository, used

for ordering search results by how likely they are to satisfy a user’s informa-

tion need. For instance, an auxiliary indexer might tell us the length of a page

or how popular the page is based on a chosen measure of popularity. These

auxiliary indexers can vary dramatically in their complexity.

Query-Processor: The query-processor is the component responsible for ac-

cessing the text and auxiliary indexes in response to a search query, and con-

structing a ranked listing of Web pages likely to satisfy the information need

underlying the query. Designing rankings algorithms to order pages by their

relevance to the user’s information need is one of the crucial challenges Web

search engines face.

The earliest Web search engines relied primarily on matching up the words in

Web pages and the words in the search query to retrieve and rank the search results.

However, this approach was unable to deal effectively with the dramatic growth of

the Web; search results to most queries yield thousands or even millions of Web

pages, making it difficult to determine which ones to display first using only text-

based cues. In general, a user may only have the patience to view the top 10 results

returned. Furthermore, a malicious practice known as keyword spamming quickly

arose — Webmasters who wanted their pages to appear at the top of the search results

for a particular query would simply repeat the words in that query many times in

their pages, making them appear relevant to purely text-based ranking algorithms.

To improve upon these algorithms, search engines began exploiting the hyperlink

structure of the Web to rank search results [8, 27]. A Web page has the ability to refer

to another page with a hyperlink, which consists of the URL of the target page as well
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as a piece of text called anchor-text that describes the target page. These hyperlinks,

or simply links, can be viewed as inducing a graph structure over the Web, where the

nodes of the graph correspond to Web pages, and the edges of the graph correspond to

links between pages. Researchers began exploiting this graph structure for improving

search result rankings; one of the earliest algorithms for doing so was PageRank [61],

which analyzed the Web graph to assign to each Web page a query-independent

notion of importance or popularity. By analyzing the hyperlink structure of the Web,

and constructing auxiliary indexes that capture the link-popularity of pages, search

engines were better able to rank search results in a spam-resistant way.

Despite numerous improvements in algorithms for ranking Web search results,

search engines have generally relied solely on the search query to determine a user’s

information need. As the Web continues to grow, and as the diversity of users in-

creases, we believe search engines must utilize contextual clues to help satisfy users’

information needs. Context-sensitive search, which takes into account the interests

of the user as well as the specific context in which the search was issued, is the next

step in providing users with the most relevant information possible. Context refers to

any sources of information, in addition to the query itself, that provide clues about

the user’s true information need. For instance, the history of queries issued leading

up to the current query is a form of query context. A search for “basketball” followed

up with a search for “Jordan” presents an opportunity for disambiguating the latter

query. The first query “basketball” is evidence that at the time the second query

“Jordan” was issued, the user is looking for information about the athlete Michael

Jordan, not about the country Jordan. As another example, a user’s bookmarks

provide clues about their interests, and thus contributes to the search context. We

propose a scalable search system which makes use of search context to improve the

search experience.

1.2 Dissertation Overview

In this dissertation, we design and implement a system capable of supporting context-

based search using the Stanford WebBase platform. We consider two scenarios. In the
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first scenario, we assume a user is browsing the Web to satisfy an information need;

our system can display URLs for pages similar to the page being viewed. This scenario

represents a purely context-based search — no query is explicitly issued by the user.

Context alone (e.g., the page the user is currently viewing) is used by the system to

provide useful related information that may help satisfy the user’s information need.

In the second scenario, we assume a user with an information need explicitly issues a

keyword search query to our system. Our system exploits search context to influence

the search result rankings for that query. This dissertation is organized as follows:

Chapter 2: Similarity Search

The functionality to support the first context-based search scenario described above

is known as similarity search. Given a query URL, a similarity-search system should

be able to quickly retrieve a ranked list of URLs for other pages that are in some

way similar to the query URL. The key challenges in designing a similarity-search

system are developing the right notion of Web page similarity, and scaling the system

to support efficient query processing over large repositories.

The primary contributions of this chapter can be summarized as follows. We in-

troduce a technique for evaluating different similarity-search strategies by comparing

them with the similarity judgments embodied in human-constructed Web directories

such as Yahoo! or the Open Directory [60, 75]. We explore a large number of strategies

to determine which one performs the best under our evaluation technique. In par-

ticular, we found that among the sources of information considered, the information

contained in the anchor-text describing target pages is the strongest source of similar-

ity information. Finally, we describe the design and implementation of a large-scale

similarity-search system that employs the best-performing similarity-search strategy.

Chapter 3: Topic-Sensitive Search

Beginning with Chapter 3, we consider the second context-based search scenario de-

scribed earlier. In this chapter, we introduce the core of our context-sensitive keyword

search system, which makes use of a set of topics to represent the context associated
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with the search query. We describe how we extend the PageRank link-analysis rank-

ing algorithm to account for search context in a practical and scalable way by making

the computation topic sensitive. The key idea in our system is that instead of assign-

ing a single estimate of importance to each page, we assign several such estimates.

We call our link-analysis algorithm Topic-Sensitive PageRank.

The primary contributions of this chapter include the Topic-Sensitive PageRank

algorithm, the empirical results demonstrating how our algorithm affects search-result

rankings, and an analysis of the theoretical properties of our algorithm in terms of

matrix computations.

Chapter 4: Computing PageRank by Power Extrapolation and

Chapter 5: Block-Oriented PageRank Computation

Because our system requires running a variant of the PageRank algorithm multiple

times when building the auxiliary page-ranking index for the repository, speeding

up PageRank computations is an important challenge. In Chapters 4 and 5, we

describe techniques for speeding up the PageRank computation on large datasets. In

Chapter 4, we describe an algorithm for speeding up the computation of PageRank

using a technique known as extrapolation. PageRank is an iterative computation;

Power Extrapolation is a technique we developed to reduce the number of iterations

required. In particular, we show that Power Extrapolation is able to speed up the

computation of PageRank by 30%.

In Chapter 5, we take a different approach to speeding up the PageRank compu-

tation. In the first part of the chapter, we describe how to compute PageRank for

large datasets in a memory efficient way, without making use of any special properties

of the underlying hyperlink structure of the Web. In the second part of the chapter,

we introduce the BlockRank algorithm that exploits the nested block structure of the

Web graph to speed up the computation of PageRank. Nested block structure refers

to a special linking pattern that is prevalent on the Web — pages tend to link to

other pages with similar URL prefixes. E.g., the majority of outlinks from pages

whose URLs are prefixed with www.stanford.edu/ are to other pages whose URLs are
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prefixed with www.stanford.edu/.1 We show that our BlockRank algorithm speeds up

the computation of PageRank by a factor of 3.

Chapter 6: Efficient Encodings for Ranking Vectors

The topic-sensitive PageRank indexes that we compute can become very large, mak-

ing it necessary to find ways of compressing them. In Chapter 6, we describe how

we compress our PageRank indexes in a way that minimizes the impact on search

result rankings. In particular, we describe how we use scalar quantization to lossily

compress the ranking data, and describe how we measure any adverse effects of the

compression by using a rank-based distortion metric. We show that we can com-

press the topic-sensitive ranking data by more than half without much loss in ranking

precision.

1.3 Related Work

Here we give a brief overview of related work; more detailed discussions are given in

the chapters that follow:

Similarity search: The “Related Pages” functionality provided by several

major search engines represents related work. However, the details of these al-

gorithms are not publicly available. Dean and Henzinger. [21] propose a related

pages algorithm based purely on the connectivity of the Web graph (i.e., using

only the edges of the Web graph, not anchor-text).

The idea of using anchor-text for document representation has been exploited

in the past to attack a variety of other information retrieval problems [2, 8, 13,

14, 20, 48].

Link-analysis algorithms for search rankings: The first two link-analysis

algorithms developed for information retrieval on the Web were PageRank, due

1As we will see in Chapter 5, the components of the hostname portion of the URL are generally
reversed before comparing prefixes.
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to Page et al. [61], and Hyperlink-Induced Topic Search (HITS), due to Klein-

berg [48, 49]. The PageRank algorithm computes a single value per page captur-

ing the importance of each page using an iterative computation that propagates

an initial estimate of page importance through the Web graph. The HITS al-

gorithm computes two values for each page, the authority score and the hub

score — the authority score captures the authoritativeness of a page, and the

hub score captures the degree to which a page links to authoritative pages.

In recent years, there has been much research on extending these link analysis

algorithms to make them more effective and on making the computations more

efficient. Our work in personalized and context-sensitive extensions to Page-

Rank and in techniques for computing PageRank more efficiently was among

the earliest along this avenue of research. A survey of many of the approaches

that have been proposed can be found in [7, 51].

Compressing ranking indexes: There has been much work on compressing

the various indexes required for large-scale Web search, although the bulk of the

attention has been directed towards compressing the text index (e.g., see Witten

et al. [74]). There has been comparatively little work on the development of

lossy encodings for compressing numeric ranking indexes (such as PageRank),

the focus of our work in Chapter 6. The field of quantization [28] provides the

framework for the encoding techniques we develop.
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Chapter 2

Similarity Search

2.1 Introduction1

In this chapter, we introduce the component of our context-sensitive search system

that supports the ability to display to the user pages that may be of interest, using

nothing more than a currently viewed page. This functionality boils down to simi-

larity search — given a query page, a similarity-search system should return a list

of “similar” Web pages. We say that two Web pages are similar if they are likely to

satisfy the same kinds of information needs that users may have.

There are many possible approaches to determining whether Web pages are similar

to one another; for instance, a high degree of cocitation might be an indicator of Web

page similarity [21]. Two pages are cocited if a third page includes links to both of

them. If two pages u and v are cocited frequently (i.e., there are many pages which

include links to both of them), it signifies that many Web page authors describing

some piece of information felt the need to refer to both u and v, making it reasonable

to believe that u and v are similar. There are numerous other ways one might use to

determine how similar Web pages are to one another — for instance, we might look

at the overlap in the words used on the pages, or instead we might look at the overlap

of the words in just the titles of the pages. Furthermore, there are many possible

ways of measuring “overlap” — we might ignore how often words appear in the text,

1This chapter covers joint work we first presented in [38, 39]

9
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or we might choose to make use of the frequency with which words appear. Each of

these choices that we make for which indicators to use to estimate the similarity of

Web pages leads to a different similarity-search strategy. Since there is no way for us

to directly measure the property that two Web pages satisfy the same information

needs, an important goal of our work is to select a similarity-search strategy that best

captures that property.

Given a small number of possible similarity-search strategies, one might imagine

comparing their relative quality through user studies, by asking humans how well a

similarity-search strategy determines the “true” similarity of Web pages (e.g., how

well a similarity-search strategy measures the degree to which Web pages satisfy the

same information needs). However, user studies can have significant cost in both time

and resources, especially if the number of possible similarity-search strategies is very

large. In this situation, it is extremely desirable to automate strategy comparisons.

In this chapter, we develop an automated evaluation technique to choose a similarity-

search strategy. In particular, we view manually constructed directories such as Ya-

hoo! [75] and the Open Directory Project (ODP) [60] as implicit sources of human

judgements about Web page similarity. For instance, if two pages are contained in the

category Arts/Music in the ODP, then we know that a human felt those two pages

were in some way similar. If these directories were complete, and categorized all Web

pages, we might choose a directory-based similarity-search strategy that simply said

that pages that are listed in the same category are similar to one another. However,

these directories contain only a fraction of the pages on the Web — the ODP has

fewer than 5 million pages, whereas the Web has over 8 billion pages. Therefore, we

must come up with other kinds of strategies that work for all Web pages, such as

measuring cocitation or textual overlap. Our approach to choosing among these pos-

sible similarity-search strategies is to measure how well each candidate strategy agrees

with the directory-based strategy for those pages that are listed in the directory. We

then use the strategy that agrees most closely with the directory-based strategy (on

that small subset of pages) for measuring the similarity of arbitrary Web pages. We

discuss the details of this evaluation technique in Section 2.2.

When considering candidate similarity-search strategies, we restrict our attention
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to only those that measure the similarity of two Web pages by first representing each

page as a multiset of terms and then measuring the overlap between the two multisets,

using a particular measure for overlap we discuss later. Thus, the distinguishing

characteristic of the candidate similarity-search strategies we consider is in exactly

how they represent Web pages as multisets (or bags) of terms. There are many

possible ways to represent a page using a bag of terms; for instance, we might choose

to include the words that occur in the body of the page, or we may choose to include

the words that occur in the text in the inbound links (i.e., anchor-text) from other

pages used to refer to the page. We describe the choices involved in representing a

page as a bag of terms in detail in Section 2.3, and describe the overlap measure we

use for bags of terms in Section 2.4. In Section 2.5, we give our evaluation results for

the various candidate strategies, and show which one performs the best.

Because of the potentially large number of terms that can get included in the

multiset representing a page, it is nontrivial to efficiently construct a similarity index

that allows quickly answering similarity-search queries. We discuss in Section 2.6 how

a previously established technique based on a special kind of hashing can be used to

implement similarity-search strategies that require multisets with large numbers of

distinct terms. In particular, we develop an indexing approach relying on the Min-

hashing technique [10, 18] to construct a similarity-search index for roughly 75 million

pages to demonstrate the scalability of our approach. Because each stage of our

algorithm is trivially parallelizable, our indexing approach can scale to the few billion

accessible documents currently on the Web with a sufficient number of machines.

2.2 Evaluation Methodology

We describe next how we evaluate different similarity-search strategies using the simi-

larity orderings implicit in human-built hierarchical directories. We use a hierarchical

directory to induce sets of “ground truth” similarity orderings. Then, we compare the

orderings produced by a particular similarity-search strategy to these ground truth

orderings, using a statistical measure outlined below. We believe that strategies that

yield higher values of this statistical measure will produce better results from the

standpoint of a user of the system who is trying to satisfy an information need.
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2.2.1 Finding a Ground-Truth Ordering

Unfortunately, there is no directly available ground truth in the form of either exact

document-document similarity values or correct similarity search results, leading to

the following problem:

Problem 1 SimilarDocument (notion of similarity): Formalize the notion of

similarity between Web documents using an external quality measure.

An external quality measure is a quality measure that makes of an external source of

information — in our case, Web directories. There is a great deal of ordering infor-

mation implicit in hierarchical Web directories. For example, a page u listed in the

ODP recreation/aviation/un-powered class is more similar to other pages listed

in that same class than to those outside of that class. Furthermore, page u is probably

more similar to other documents in other classes under recreation/aviation than

to pages entirely outside of that region of the directory. Intuitively, the pages most

similar to u are the other documents in u’s class, followed by those in sibling classes,

and so on.

There are certainly cases where location in the hierarchy does not accurately reflect

document similarity. Consider documents in recreation/autos, which are likely

more similar to those in shopping/autos than to those in recreation/smoking. We

have found that these cases are few enough that they do not have much effect on our

evaluation criteria, since we average over the statistics of many documents.

To formalize the notion of distance from a source document to another document

in the hierarchy we define familial distance.

Definition 1 Let the familial distance df(s, d) from a source document s to another

document d in a class hierarchy be the distance from s’s class to the most specific

class dominating both s and d.2

For simplicity, we collapsed the directory below a depth of three and ignored

the (relatively few) documents above that depth. For example, we reassigned any

pages listed under the category Computers/Software/Graphics/Animation to the

2We treated the hierarchy as a tree, ignoring the “soft-links” denoted by an “@” suffix
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Unrelated Documents 

Query Document 

Same Class Documents 

Sibling Class Documents 

Cousin Class Documents 

Document Hierarchy 

Figure 2.1: Mapping a hierarchy onto a partial ordering, given a source document.

category Computers/Software/Graphics. Therefore, there are only four possible

values for familial distance, as depicted in Figure 2.1. We name these distances as

follows:

Distance 0: Same – Pages are in the same class.

Distance 1: Siblings – Pages are in sibling classes.

Distance 2: Cousins – Pages are in classes which are first cousins.

Distance 3: Unrelated – The lowest common ancestor of the documents classes is

the hierarchy root.

Given a source document, we wish to use familial distances to other documents to

construct a partial similarity ordering over those documents. Our basic assumption

is:

In general, the true similarity of documents to a source document decreases

monotonically with the familial distance from that document.
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Given this principle, and our definition of familial distance, for any source document

in a hierarchical directory, we can derive a partial ordering of all other documents

in the directory. Note that we do not give any numerical interpretation to these

familial distance values. We only depend on the above stated principle: a source

document is on average more similar to a same-class document than to a sibling-

class document, and is on average more similar to a sibling-class document than a

cousin-class document, and so on.

Definition 2 Let the familial ordering ≺df (s) of all documents with respect to a source

document s be: ≺df (s)= {(a, b)| df(s, a) < df(s, b)}

This ordering is very weak, since for a given source, many pairs of documents are

not comparable. For instance, given a page u in Computers/Software/Graphics, we

cannot say which is more similar — a page v in Computers/Software/Business or a

page w in Computers/Software/Networking. The majority of the distinctions that

are made, however, are among documents that are very similar to the source and

documents that are much less similar to the source. In contrast, no distinctions are

made between pages in unrelated categories — using the previous example, we can

say nothing of the similarity of page u to any page under the Arts branch vs. any

page under the Science branch. However, we are generally not concerned with the

degree to which we can make similarity judgements among pages that have very low

similarity to the query page, so the familial ordering gives us ground truth judgements

precisely for the cases we want.

2.2.2 Comparing Orderings

At this point, we have derived a partial ordering from a given hierarchical directory

and query (source) document s that belongs in the hierarchy. We then wish to use this

partial ordering to evaluate the correctness of an (almost) total ordering produced

by our system.3 Perhaps the most common method of comparing two rankings is the

3A strategy produces ties when two documents d1 and d2 have exactly the same similarity to the
source document s. When this happens, it is nearly always because s has similarity 0 to both d1

and d2.
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Spearman rank correlation coefficient, but this measure is best suited to comparing

rankings with few or no ties [70]. A more natural measure for our requirements is the

Kruskal-Goodman Γ [26]:

Definition 3 For orderings ≺a and ≺b, Γ(≺a,≺b) is 2× Pr[≺a,≺b agree on (x, y) ,

given that ≺a,≺b both order (x, y)] − 1

For instance, consider the orderings ≺1: (a, {b, c}, d) and ≺2: (b, a, c, d). ≺1 places

a before the rest, and it places b and c before d. It makes no distinction between

b and c. ≺2 is a total ordering — it contains no ties. The two orderings agree on

the relative order of a and d — they both say that a appears before d. The relative

order of b and c are irrelevant when computing Γ, since ≺1 does not order those

two. The two orderings disagree on the relative order of a and b. Intuitively, there

are a certain number of document pairs, and a given ordering only makes judgments

about some of those pairs. When comparing two orderings, we look only at the pairs

of documents that both orderings make a judgment about. A value of 1 is perfect

accord, 0 is the expected value of a random ordering, and -1 indicates perfect reversed

accord. We claim that if two rankings ≺a and ≺b differ in their Γ values with respect

to a ground-truth ≺t, then the ordering with the higher Γ will be the better ranking.

However, there is a caveat here. We can make this claim only if ≺a and ≺b are both

total orderings. If, say, ≺a is total, but ≺b only orders selected pairs, then the Γ value

for ≺b will likely be artificially inflated. To correct for this inflation and make all of

our settings comparable, we randomly break any ties in the rankings produced by our

candidate similarity-search strategies to force all strategies to return a total order.

Note that ties in the ground-truth familial ordering are not problematic, as they are

constant and do not lead to inflated Γ values for any candidate strategy. Thus, we

allow ties in the ground truth ≺t, but not in orderings ≺a that are compared to the

ground truth.

2.2.3 Regions of the Orderings

Thus, given a directory, a query document s, and a similarity strategy sim, we can

construct two orderings over documents in the directory: the ground-truth familial
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ordering ≺df (s), and the total ordering induced by our similarity strategy, ≺sim(s).

We can then calculate the corresponding Γ value. This value gives us a measure of

the quality of the ranking for that query document with respect to that similarity

strategy and directory. However, we need to give a sense of how good our rankings are

across all query documents, so we compute the average Γ value over a large number

of test query pages.

In order to more precisely evaluate our results, however, we calculated three

partial-Γ values that emphasized different regions of the familial ordering. Each

partial-Γ is based on the fraction of correct comparable pairs of a certain type. Our

types are:

Sibling-Γ: Calculated using only pairs of documents (d1, d2) where d1 is from the

same class as the source document and d2 is from a sibling class; i.e., we ignore

all documents that are not either distance 0 or distance 1 from the source

document when computing Γ.

Cousin-Γ: Calculated using only pairs of documents (d1, d2) where d1 is from the

same class as the source document and d2 is from a cousin class; i.e., we ignore

all documents that are not either distance 0 or distance 2 from the source when

computing Γ.

Unrelated-Γ: Calculated using only pairs of documents (d1, d2) where d1 is from the

same class as the source document and d2 is from an unrelated class; i.e., we

ignore all documents that are not either distance 0 or distance 3 from the source

when computing Γ.

These partial-Γ values allow us to inspect how various similarity measures per-

formed on various regions of the rankings. For example, sibling-Γ performance indi-

cates how well fine distinctions are being made near the top of the familial ranking,

while unrelated-Γ performance measures how well coarser distinctions are being made.

Unrelated-Γ being unusually low in relation to sibling-Γ is also a good indicator of

situations when the top of the list is high-quality from a precision standpoint but

many similar documents have been ranked very low and therefore omitted from the
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Source document http://www.aabga.org

Source title American Assoc. of Botanical Gardens and Arboreta

Source category /home/gardens/clubs and associations

Settings: window size = 32, stem, dist and term weighting
Sibling-Γ = 0.53

Rank Sim Category
1 0.16 /home/gardens/clubs and associations

2 0.15 /home/gardens/clubs and associations

5 0.13 /home/gardens/clubs and associations

10 0.11 /home/gardens/plants

20 0.10 /home/gardens/clubs and associations

50 0.07 /home/gardens/plants

100 0.06 /home/apartment living/gardening

Settings: window size = 0, no stem, no term weighting
Sibling-Γ = 0.30

Rank Sim Category
1 0.17 /reference/libraries/independent libraries

2 0.15 /home/gardens/clubs and associations

5 0.14 business/industries/construction and maintenance

10 0.14 /business/industries/agriculture and forestry

20 0.13 /recreation/travel/reservations

50 0.13 /recreation/travel/reservations

100 0.13 business/industries/construction and maintenance

Figure 2.2: Similarity orderings obtained from two different strategies with respect
to the same source document. We computed the sibling-Γ statistic (with respect the
the ODP-familial ordering) for each ranked listing. For each document shown, we
give the rank, the similarity to the source document according to the strategy, and
the category (we omit the URL of the document).

top of the list. For our experiments, we generally concentrated on the sibling-Γ mea-

sure, as we are most interested in the fine-grained similarity distinctions that the

various candidate strategies are able to make. As a preview of our results, and to

illustrate the use of the sibling-Γ measure as an indicator of the relative quality of

similarity-search strategies, we give an example of two strategies that yielded ranked

listings with different sibling-Γ values in Figure 2.2.

2.3 Document Representation

In this section we will discuss the specific document representation and term weight-

ing options we chose to evaluate using the technique outlined above. Let the Web
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document u be represented by a bag

Bu = {(w1
u, f

1
u), . . . , (wk

u, f
k
u )}

where wi
u are terms used in representing u (e.g., terms found in the body of page

u), and f i
u are corresponding weights. In this section, we discuss different choices for

which words to include in a document’s bag (and with what weight); in Section 2.5

we will see how these different strategies performed under our evaluation criteria.

2.3.1 Choosing Terms

The following are 3 general approaches we consider for selecting the terms to include

in the multiset representing a Web page u:

1. Words appearing in the body of u (a content-based approach). This approach

exploits the intuition that similar pages contain many of the same words.

2. Identifiers (e.g. URLs) for each page v that links to u (a link-based approach).

This approach exploits the intuition that similar documents are often cocited

by other pages.

3. Words appearing inside or near an anchor in page v, when the anchor links to

page u (an anchor-based approach). This approach exploits the intuition that

similar pages are often described using the same words in anchors of pages that

refer to them.

Content-based approaches ignore the available hyperlink data and are susceptible

to spam. In particular, they rely solely on the information provided by the page’s

author, ignoring the opinions of the authors of other Web pages [8]. Link-based

approaches, investigated in [21], suffer from the shortcoming that pages with few

inlinks will not have sufficient citation data to measure similarity. This problem is

especially pronounced when attempting to discover similarity relations for new pages

that have not yet been cited (i.e., linked to) a sufficient number of times. As we will

see in Section 2.5, under link-based approaches, the multisets for most documents

(even related ones) are in fact disjoint.
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The third type of approach, which relies on text in and near hyperlinks, referred

to as the anchor-window [13], appears most useful for the Web similarity-search task.

Indeed, the use of anchor-windows has been previously considered for a variety of other

Web information retrieval tasks [2, 4, 13, 20]. The anchor-window can be thought of

as a compact summary of the target page written by the author of the source page [2].

We expect that when aggregating the counts of terms from all anchor-windows that

refer to a Web page, the frequency of relevant terms will dominate the frequency of

irrelevant ones. Thus, the resulting distribution of term frequencies in the multiset is

expected to be a signature that is a reliable, concise representation of the document.

These three general approaches can also be combined; we considered strategies

where terms of two or all three types were included in the bag representations of

pages. There are some additional details involved with each of these approaches

that we describe next. For both the content and anchor-based approaches, we chose

to remove all HTML comments, Javascript code, tags (except ’alt’ text), and non-

alphabetic characters. For the anchor-based approach, we must also decide how many

words to the left and right of an anchor Avu (the anchor linking from page v to page

u) should be included in Bu. We experimented with three strategies for this decision.

In all cases, the anchor-text itself of Avu is included, as well as the title of document

u. The three windowing strategies are described next:

Basic: We choose some fixed window size W , and always include W words to the

left, and W words to the right, of Avu.
4 Specifically, we use W ∈ {0, 4, 8, 16, 32}.

Syntactic: We use sentence, paragraph, and HTML-region-detection techniques to

dynamically bound the region around Avu that gets included in Bu. The primary

document features that are capable of triggering a window cut-off are paragraph

boundaries, table cell boundaries, list item boundaries, and hard breaks which

follow sentence boundaries. This technique resulted in very narrow windows

that averaged close to only 3 words in either direction.

Topical: We use a simple technique for guessing topic boundaries at which to bound

the region that gets included. The primary features that trigger this bounding

4Stopwords do not get counted when determining the window cutoff.
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are heading beginnings, list ends, and table ends. A particularly common case

handled by these windows was that of documents composed of several regions,

each beginning with a descriptive header and consisting of a list of URLs on the

topic of that header. Regions found by the Topical heuristics averaged about

21 words in size to either side of the anchor.

2.3.2 Stemming and Stopwording

Once we have chosen the kinds of terms to include in a bag, we have the choice of

modifying or filtering the terms somehow. One commonly used information retrieval

technique is stemming, which removes suffixes so that word variants map to a single

term. For instance, stemming maps the word “cars” to “car”, since from an informa-

tion retrieval perspective, the two are almost identical. Another common technique

is to ignore stopwords, which are words such as “the” and “a” that have very little

use from an information retrieval perspective. High frequency terms that appear in

many documents are often candidates for stopword lists. In particular, we considered

the use of a list containing roughly 800 stopwords constructed from high frequency

terms. We explored the effect of three different stemming and stopwording variations:

Nostem: The term is left as is. If it appears in the stopword list, it is dropped.

Stem: The term is stemmed using Porter’s well known stemming algorithm [65]

to remove word endings. If the stemmed version of the term appears in the

stemmed version of our stopword list, it is dropped.

Stopstem: The term is stemmed as above, for the purposes of checking whether

the term stem is in the stopword list. If the stem is a stopword, the term is

dropped, otherwise the original unstemmed term is added to the bag.

The Stopstem variation provides valuable insight into the effects of stemming, which

are twofold: (i) Terms which should be collapsed, for instance ‘computer’ and ‘com-

puters,’ get mapped to the same stem, ‘computer’ and (ii) many terms useless for

detecting similarity which do not themselves appear frequently enough to get flagged

as stopwords, e.g., ‘informs,’ will be flagged when using Stopstem, since the stem
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‘inform’ is shared with the stopword ‘information.’ As we will see in Section 2.5, both

effects manifest themselves to differing degrees in our experiments.

2.3.3 Term Weighting

A further consideration in generating document bags is how a term’s frequency should

be scaled. A standard technique employed in the information retrieval community

involves using one of the variants of the term-frequency, inverse-document frequency

(TF.IDF) weighting method [69]. A clear benefit of the TF.IDF family of weight-

ing functions is that they attenuate the weight of terms with high document fre-

quency (i.e., terms that appear in many documents). These monotonic term weight-

ing schemes, however, amplify the weight of terms with very low document frequency.

This amplification is in fact good for keyword-search queries, where a rare term in the

query should be given the most importance. In the case where we are judging doc-

ument similarities, however, rare terms are much less useful as they are often typos,

rare names, or other nontopical terms that adversely affect the similarity measure.

For example, if a query page contains the name of the author, who has a rare first

name, we do not in general want to return a list of other documents whose authors

have that first name. Therefore, we experimented with what we call a nonmonotonic

document frequency (NMDF) term weighting scheme, since it attenuates both high

and low document-frequency terms. The idea that mid-frequency terms have the

greatest “resolving power” is not new [53, 69].

Another component of term weighting that we consider for anchor-text based

strategies, which has a substantial impact on our quality metric, is distance weighting.

Distance weighting is a scheme in which for a given anchor-window size, instead of

treating all terms near a link Avu equally, we weight them based on their distance

from the link (with anchor-words themselves given distance 0). As we will see in

Section 2.5, the use of a distance-based attenuation function that gives more weight

to words closer to the link, in conjunction with large anchor-windows, significantly

improves results under our evaluation measure.

The specifics of the weighting schemes we used and their relative performance are
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described in detail in Section 2.5.2. Note that the weighting schemes we consider

can produce nonintegral weights, whereas the multiplicity of terms in multisets are

integers by definition. As a practical matter, we avoid this issue by scaling term

weights by some factor (we used 1,000), and rounding to the nearest integer, although

it only becomes necessary in the implementation of the min-hashing scheme (see

Section 2.6).

2.4 Measure of Overlap

In the previous section we explained how we represent Web documents using bags

(i.e., multisets). We now describe the metric we use to measure the overlap between

two bags. The candidate similarity-search strategies we consider use the overlap of

the bags for two pages, according to this metric, as their estimate for the similarity

between the pages. Our metric is a variant of the Jaccard coefficient. The Jaccard

coefficient of two sets A and B is defined as

simJ (A, B) =
|A ∩ B|
|A ∪ B|

We extend Jaccard from sets to bags by applying bag union and bag intersection in

the above equation. In particular, we take the max and min multiplicity of terms, for

the union and intersection operations, respectively.5

We focus on the Jaccard measure rather than the classical cosine measure because

of a scalability consideration. For scaling our similarity-search strategies to massive

Web-page repositories, we rely on the Min-Hashing technique [42]. The main idea

here is to hash the bags for Web pages in a way such that bags are mapped to the

same bucket with a probability equal to the Jaccard similarity between the bags.

Creating such a hash function for the cosine measure is to our knowledge an open

problem. On the other hand, creating such hashes is possible for the Jaccard measure

(see [10, 42]). Note that the two measures are not significantly different from one

5As described in the previous section, by scaling our term weights and rounding, we ensure that
terms have only integral multiplicities.
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another; we verified that they did not lead to meaningful differences in our similarity

rankings.

2.5 Experimental Results of Strategy Evaluation

For evaluating the various strategies discussed in Section 2.3, we employ the method-

ology described in Section 2.2. We sampled the Open Directory [60] to get 300 pairs

of clusters from the third level in the hierarchy.6 This set of pairs consisted of 100

pairs of sibling clusters, 100 pairs of cousin clusters, and 100 pairs of clusters with

no familial relation. There were 144,767 URLs present in this test set of clusters. As

our source of Web data, we used a crawl from the Stanford WebBase from January

2000, containing 42 million pages [41]. 51,469 of the URLs in the test clusters were

linked to by some document in our crawl, and could thus be used by our anchor-based

approaches. These test-set URLs were linked to by close to 1 million pages in our

repository, all of which were used to support the anchor based strategy we studied.7

This section describes the evaluation of the strategies suggested in Section 2.3.

We verified that all three of our Γ measures yield, with very few exceptions,

the same relative order in performance of the candidate strategies. In a sense, this

agreement is an indication of the robustness of our Γ measures. Here we report the

results only for the sibling-Γ statistic — the graphs for the cousin-Γ and unrelated-Γ

measures are similar. For some of the graphs shown in this section the difference

of Γ scores between different strategies might seem quite small, i.e., second decimal

digit. Notice, however, that in each graph we explore the effect of each parameter

independently; when we add up the effect of all parameters, the difference becomes

substantial.

6Any URLs present below the third level were collapsed into their third level ancestor category,
as we described in Section 2.2.1.

7ODP pages themselves were excluded from the data set to avoid bias.
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Figure 2.3: Document representations. Larger fixed anchor windows always gave
better results, but topical dynamic windows achieved similar results with shorter
average window size.

2.5.1 Results: Choosing Terms

In Figure 2.3, we show the sibling-Γ values for strategies for which bags are gen-

erated using various anchor-window sizes, using Topical and Syntactic window

bounding, using purely links, and using purely page contents.

The anchor-based approach using the largest windows provides the best result

according to our evaluation criteria. This result may seem counterintuitive; by taking

small windows around inbound anchors, we would expect fewer spurious words to be

present in a document’s bag, providing a more concise representation. Further exper-

iments revealed why larger windows provide benefit. Figure 2.4 shows the fraction of

document pairs within the same Open Directory cluster that are orthogonal (i.e., have

disjoint term bags) under a given representation. We see that with smaller window

sizes, many documents that should be considered similar are orthogonal. In this case,

no amount of reweighting or scaling can improve results; the representations simply

do not provide enough accessible similarity information about these orthogonal pairs.

We also see that, under the content and link approaches, documents in the same clus-

ter are largely orthogonal. Under the link-based approach, most of the documents

within a cluster are pairwise orthogonal. Inbound links are opaque descriptors. If two
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Figure 2.4: Intracluster orthogonality for the different strategies. wX refers to the
anchor-window approach with a window size of X. Using small anchor-windows or
using purely links resulted in document bags which were largely orthogonal, making
similarities appear to be 0.

pages have many inlinks, but the intersection of their inlinks is empty, we can say very

little about these two pages. It may be that they discuss the same topic, but perhaps

because they are new, they are never cocited. In the case of the anchor-window-based

approach, the chance that the bags for the two pages are orthogonal is much lower.

Each inlink, instead of being represented by a single opaque URL, is represented by

the descriptive terms that are the constituents of the inlink. Note that the pure link

based approach shown is very similar to the Cocitation Algorithm of [21].8

We also experimented with dynamically sized Syntactic and Topical anchor-

windows, as described in Section 2.3. These window types behave roughly according

to their average window size, both in Γ values and orthogonality. Surprisingly, al-

though the dynamic-window heuristics appeared to be effective in isolating the desired

regions, any increase in region quality was overwhelmed by the trend of larger win-

dows providing better results.

In addition to varying window size, we can also choose to include terms of multiple

8Furthermore we verified that the Cocitation Algorithm as described in [21] yields similar Γ scores
to the scores for the ‘links’ strategy shown above.
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Figure 2.5: Three hybrid bag types. Adding page contents gave better results than
using anchor-windows alone, though adding link identifiers lowered Γ.

types (anchor, content, or links, as described in Section 2.3) in our document repre-

sentation. Figure 2.5 shows that by combining content and anchor-based bags, we

can improve the sibling-Γ score.9 The intuition for this variation is that if a particular

document has very few inbound links, then the document’s contents will dominate the

bags. Otherwise, if the document has many inbound links, the anchor-window-based

terms will dominate. In this way, the document’s bag of terms will implicitly depend

on as much information as is available. Note, however, that explicitly adding inlink

URLs degrades performance, because the anchor-window approach subsumes any in-

formation that opaque inlink URLs can provide. With large anchor-windows, if two

pages are in fact cocited often, they will share many of the same descriptive terms,

due to overlapping anchor-windows. By adding inlink URLs, we end up reducing the

bag overlap of truly similar pages.

2.5.2 Results: Term Weighting

In the previous section, we saw that the anchor-based approach with large windows

performs the best. We can improve performance substantially under our evaluation

9All values in Figure 2.5 were generated with the distance-based term weighting scheme to be
described.
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Figure 2.6: Term weighting: Frequency and distance weighting each improved results,
and further improved results when combined.

criteria by weighting terms based on their distance from the anchor. We prevent

ourselves from falling into the trap of making similar documents appear orthogonal

(downside of small windows), while at the same time, not giving spurious terms too

much weight (downside of large windows). Figure 2.6 shows the results when term

weights are scaled by log2(
32

1+distance(t,Avu)
).

The results for frequency based weighting, shown in Figure 2.7, suggest that at-

tenuating terms with low document frequency, in addition to attenuating terms with

high document frequency (as is usually done), can increase performance. Let tf be a

term’s frequency in the bag, and df be the term’s overall document frequency. Then

in Figure 2.7, log refers to weighting with tf
1+log2(df)

. sqrt refers to weighting with
tf√
df

. NMDF refers to weighting with the log-scale gaussian tf × e−
1
2
( log(df)−µ

σ
)2 (see

Figure 2.8).
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Figure 2.7: Types of frequency weighting: sqrt gave the best results of the monotonic
frequency weighting schemes; NMDF gave slightly better results.

2.5.3 Results: Stemming and Stopwording

We now investigate the effects of our three stemming and stopwording approaches.

Figure 2.9 shows the sibling-Γ values for the Nostem, Stopstem, and Stem strate-

gies. We see that Stopstem improves the Γ value, and that Stem provides an addi-

tional (although much less statistically significant10) improvement. As mentioned in

Section 2.3.2, the effect of Stopstem over Nostem is to increase the effective reach

of the stopword list. Words that are not themselves detected as stopwords, yet share

a stem with another word that was detected as a stopword, will be removed. The

small additional impact of Stem over Stopstem is due to collapsing word variants

into a single term.

2.6 Scaling to Large Repositories

The results of the previous section allowed us to choose the strategy that agrees

most closely with the similarity judgements embodied in the ODP — namely, using

10The Nostem − Stopstem and Stem − Stopstem average differences are of the same
approximate magnitude, however the pairwise variance of the Stem-Stoptem is extremely high in
comparison to the other pairwise variances.
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Figure 2.8: Nonmonotonic document frequency (NMDF) weighting.

size-32 anchor windows with page contents, in conjunction with stemming, distance

weighting, and NMDF term weighting. In this section, we discuss how to scale this

strategy to allow similarity search over large Web repositories. We begin with a

definition and formal statement of the problem.

Definition 4 We say two documents are α-similar if the Jaccard coefficient of their

bags is greater than α.

Problem 2 SimilarDocument (efficiency considerations): Preprocess a repos-

itory of the Web W so that for each query Web-page q in W all Web pages in W that

are α-similar to q can be found efficiently, for some fixed α.

In this section, we develop a scalable algorithm, called IndexAllSimilar to solve

the above problem for a realistic Web repository size.

In tackling Problem 2, there is a tradeoff between the work required during the

preprocessing stage and the work required at query time to find the documents α-

similar to q. For instance, we might imagine precomputing all Web-page similarities

offline, and generating a similarity index that explicitly contained for each page, a list

of all similar Web pages (an approach we considered in [38]). Although the query-

time cost of this approach is low, a disadvantage is that when given a query document

that was not available at indexing time, we can not return any results. In this section
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Figure 2.9: Stemming Variants: stemming gave the best results.

we discuss in detail an alternate approach that builds a specialized index during

preprocessing that allows us to perform the similarity computation at query time.

As we will describe, the index is compact and can be generated efficiently, allowing

us to scale to large repositories with modest hardware resources. The computation

required at query time is reasonable, and furthermore, given a query page that was not

available to us at indexing time, we can use any partially available information (such

as the title or contents of the query page, which the system can fetch in real-time) to

allow the retrieval of similar pages.

A schematic view of the IndexAllSimilar algorithm is shown in Figure 2.10.

In the next two sections, we explain IndexAllSimilar as a two stage algorithm. In

the first stage we generate bags for each Web page in the repository. In the second

stage, we generate a vector of signatures, known as Min-hash signatures, for each

bag, and index these signature vectors to allow efficient retrieval both of document

ids given signatures, and the signatures given document ids.

2.6.1 Bag Generation

As we explained in the previous sections, the bag for a document contains words (i)

from the content of the document and (ii) from anchor-windows of other documents

that link to it. Our bag generation algorithm scans through the Web repository
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Figure 2.10: Schematic view of our approach.

and produces bag fragments for each document. A bag fragment for page u refers

to the partial bag of terms that we have seen for u at some point during the scan

— for instance, every time we encounter a link to u, we produce a bag fragment

containing terms from that one anchor-window. For each document there is at most

one content bag fragment (i.e., a partial bag containing terms from just the page’s

body) and possibly many anchor bag fragments. When generating bag fragments, we

apply stemming and stopwording, and in the case of anchor bag fragments, distance

weighting. After all bag fragments are generated, we must combine them using a

sort-based merge operation to form the full bags for the pages, apply our NMDF

scaling as discussed in Section 2.3.3, and normalize the weights to sum to a constant.

Also, we ensure that our weights are integral by scaling by 1,000 and rounding to the

nearest integer, so that our bag overlap measure is well defined.
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2.6.2 Generation of the Document Similarity Index

At this point, we now have for each Web page, a representation as a bag of words

B = {(w1, f1), . . . , (wk, fk)}, where w are the words found in the content and anchor

text of the document, and f are the corresponding integral weights. We describe next

our indexing scheme.

There exists a family H of hash functions (see [12]) such that for each pair of

documents u, v we have Pr[h(u) = h(v)] = simJ (u, v), where the hash function h is

chosen at random from the family H and simJ(u, v) is the Jaccard similarity between

the two pages’ bags. The family H is defined by imposing a random order on the set

of all words we have seen (known as the lexicon) and then representing each bag u

by the lowest rank (according to that random order) element from Bu. For instance,

let us assume that the only words we have seen in any bag are {apple, grape, pear}.
Now consider a particular hash function h from the family H. Say for instance the

random order imposed on the lexicon for h is (pear, apple, grape). If the bag for u is

{grape, apple}, then h(u) is apple, since apple appeares earlier in the imposed lexicon

ordering for h than grape.

We have to make a slight adjustment to this scheme to account for the fact that

we are dealing with multisets rather than sets — we must treat each occurrence of a

word in the multiset as a distinct term. In particular, we suffix the nth occurrence

of a word in a multiset by the token n. For instance, given the multiset {(apple,
2), (pear, 1)}, we would convert it to the set {apple 1, apple 2, pear 1}. Note that

the Jaccard similarities of sets generated in this way are exactly the same as the

bag-variant of the Jaccard measure applied to the original multisets. We modify the

lexicon over which we generate random orders when computing signatures to consist

of these suffixed terms.

In practice, it is quite inefficient to generate a fully random permutation of all

words in the lexicon. Therefore, Broder et al. [12] use a family of random linear

functions of the form h(x) = ax + b mod p. We use the same approach (see Broder

et al. [11] and Indyk [42] for the theoretical background of this technique). Also,

although a signature for a bag is conceptually a word (namely the word with the

lowest rank according to a given random permutation of the lexicon), in practice we
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Algorithm: ProcessQuery
Input: Query document q
Output: Similar documents
Let mhq = H [q] /* Fetch the MH-vector for q */
For each j from 1 to m /* Iterate over mhq */

/* For documents with the same j’th MH-signature as q */
For each docu ∈ I[j][mhq[j]]

sim[docu] + +
Sort the set of docids {doci} by their sim scores sim[doci]

Output {[doci, sim[doci]]| sim[doci]
m

> α}

Figure 2.11: Query Processing.

use a 4-byte numeric word identifier as the signature, in place of the word itself.

Based on the above property of the family H of hash functions, we compute for

each bag a vector of Min-hash signatures (MH-signatures) that can be used to estimate

the similarities of the corresponding bags. In particular, if we generate a vector mhu

of m MH-signatures for each document u, the expected fraction of the positions in

which two pages share the same MH-signatures is equal to the Jaccard similarity of

the bags for those two pages.

We now describe how we generate and index these signature vectors. We generate

two data structures on disk. The first, H , consecutively stores mhu for each document

u (i.e., the m 4-byte MH-signatures for each document). Since our document ids

are consecutively assigned, fetching these signatures for any document, given the

document id, requires exactly 1 disk seek to the appropriate offset in H , followed by

a sequential read of m 4-byte signatures. The second structure, I, is generated by

inverting the first. For each position j in an MH-vector, and each MH-signature h

that appears in position j in some MH-vector, I[j][h] is a list containing id’s for every

document u such that the mhu[j] = h. The algorithm for retrieving the ranked list

of documents α-similar to the query document q, using the indexes H and I, is given

in Figure 2.11.

When constructing the indexes H and I, the choice of m needed to ensure that

documents that are α-similar to the query document are retrieved by ProcessQuery
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depends solely on α; in particular, it is shown in [12] that the choice of m is indepen-

dent of the number of documents, as well as the size of the lexicon. Since we found

that documents within an Open Directory category have similarity of at least 0.15

to one another, we chose α = 0.15. We can safely choose m = 80 for this value of

α [18].11

2.7 Scalability Experiments

We employed the strategies that produced the best Γ values (see Section 2.5) in

conjunction with the scalable algorithm we described above (see Section 2.6) to run

an experiment on a sizable Web repository. In particular we used size-32 anchor-

windows with distance and NMDF term weighting, stemming, and with content terms

included. We provide a description of our dataset and the behavior of our algorithms,

as well as a few examples from the results we obtained.

2.7.1 Efficiency Results

Our dataset was the January 2001 Stanford WebBase repository that contained

roughly 120 million pages. For our large scale experiment, we used a 45 million

page subset, which generated bags for 75 million pages.12 After merging all bag frag-

ments, we generated 80 MH-signatures (m = 80), each 4 bytes long, for each of the

75 million pages.

Three machines, each with a single AMD-K6 550MHz processor, were used to

process the Web repository in parallel to produce the bag fragments. The subsequent

steps (merging of fragments, MH-signature generation, and query processing) took

place on a dual Pentium-III 933 MHz machine with 2 GB of main memory. The

timing results of the various stages and index sizes are given in Figure 2.12. The

11We chose α and m heuristically; the properties of the Web as a whole differ from those of Open
Directory. Given additional resources, decreasing α and increasing m would be appropriate.

12This latter number includes bags for pages that were linked to by pages in the 45 million Web
page subset, but might not have been in the subset itself.



CHAPTER 2. SIMILARITY SEARCH 35

Algorithm step Time

Generation of bag fragments 24 hours
Merging of anchor-bag fragments 8 hours
MH-signature generation 22 hours
Query Processing < 3 seconds

Type of data Space

Web repository (45M pages,compressed) 100 GB
Merged bags 42 GB
MH-signatures (H) 24 GB
Inverted MH-signatures (filtered) (I) 5 GB

Figure 2.12: Timing results and space usage for similarity index.

query processing step is dominated by the cost of accessing I, the smaller of the on-

disk indexes. To improve performance, we filtered I to remove URLs of low indegree

(3 or fewer inlinks). Note that these URLs remain in H , so that all URLs can appear

as queries; some simply will not appear in results. Of course at a slight increase in

query time (or given more resources), I need not be filtered in this way. Also note that

if I is maintained wholly in main-memory (by partitioning it across several machines,

for instance), the query processing time drops to a fraction of a second.

2.7.2 Quality of Retrieved Documents

Accurate comparisons with existing search engines are difficult, since one needs to

make sure both systems use the same Web document collection. We have found how-

ever, that the “Related Pages” functionality of commercial search engines often return

navigationally, as opposed to topically, similar results. For instance, www.msn.com is

by in some sense similar to moneycentral.msn.com, as they are both part of Microsoft

MSN. However, the former would probably not be a very useful result for someone

looking for other financial sites. The use of our evaluation methodology has led us

to strategies that reflect the topical notion of “similarity” embodied in the Open Di-

rectory. For illustration, we have provided some sample queries in Figure 2.13. In

Figure 2.14 we have given the top 8 words in the bags for these query URLs.13
13For clarity, the terms displayed in Figure 2.13 were unstemmed with the most commonly occur-

ring variant of the word.
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MSN Money
moneycentral.msn.com

MSN Money
www.moneycentral.com

Money Magazine
www.pathfinder.com/money

Welcome to Moneyextra
www.moneyworld.co.uk

Money
www.money.com

ETrade
www.etrade.com

Money Club
www.moneyclub.com

Morningstar - ... successful investing
www.morningstar.net

The Money Page – ... Guide to Investment
www.moneypage.com

Weather.com
www.weather.com

CNN.com - Weather
www.cnn.com/WEATHER

Welcome to the Weather Underground
www.princeton.edu/Webweather/ww.html

Rain or Shine
www.rainorshine.com

UM Weather
cirrus.sprl.umich.edu/wxnet

Weather for Active Lives
www.intellicast.com/weather/

WeatherPost
www.weatherpost.com

Full-service weather company
www.wni.com

Welcome to The Weather Underground
www.wunderground.com

CNN Money
www.cnnfn.com

Financial markets, commodities, news
www.bloomberg.com

Investors Business Daily
www.investors.com

Welcome to the new Barron’s online
www.barrons.com

Financial Times
www.usa.ft.com

CNN Money
cnnfn.cnn.com

CNBC on MSN Money Wizard
www.cnbc.com

Financial Information Link Library
www.mbnet.mb.ca/˜russell

Wallstreet Journal Home Page
update.wsj.com

MP3.com: free mp3 downloads...
www.mp3.com

International Music Network - About Us
imnworld.com/about.html

EMusic — World’s Most Popular MP3 Service!
www.emusic.com

CMJ: New Music First
www.mp3now.com

EMusic — World’s Most Popular MP3 Service!
www.goodnoise.com

Lycos Music — Downloads
mp3.lycos.com

Audiogalaxy
www.audiogalaxy.com

Listen
www.listen.com

LAUNCH.com - Discover New Music...
www.launch.com

The Source for Java(TM) Technology
java.sun.com

The Source for Java(TM) Technology
www.javasoft.com

developerWorks: Java technology
www.ibm.com/java

The IT Industry Portal
www.gamelan.com

DevEdge Online - JavaScript Developer Central
developer.netscape.com/tech/javascript/

Microsoft Visual J++ Home Page
www.microsoft.com/visualj

JavaScript World – Welcome!
www.jsworld.com

Java Boutique
www.j-g.com/java

JavaWorld.com
www.javaworld.com

CD Now
www.cdnow.com

CD Universe - Your Online Music Store
www.cduniverse.com

The Orchard - ... music, artists, bands
www.theorchard.com

Columbia House — Home Page
www.columbiahouse.com

Every CD
www.everycd.com

CDconnection.com
www.cdconnection.com

Music Boulevard
www.musicblvd.com

Music: CDs, records and tapes, oh my!
www.gemm.com

CD World
cdworld.com

Figure 2.13: Sample queries and results.
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URL Top Terms in Bag (Desc. Order by Weight)

moneycentral.msn.com money, finance, msn, website,
moneycentral, stock, employment, microsoft

www.weather.com weather, channel, forecasts, fbc,
enter, travel, seek, best

www.cnnfn.com finance, business, cnn, cnnfn,
stock, market, street, money

www.mp3.com music, audio, player, artist,
napster, radio, band, million

java.sun.com java, jdk, technology, microsystems,
api, applet, spacer, platform

www.cdnow.com music, cdnow, amazon, records,
books, sports, best, entertainment

Figure 2.14: Top 8 words from sample bags.

2.8 Related Work

Most relevant to our work are algorithms for the “Related Pages” functionality pro-

vided by several major search engines. However, the details of these algorithms are not

publicly available. Dean and Henzinger [21] propose algorithms, which we discussed

in Sections 3.1 and 2.5.1, for finding related pages based on the link connectivity of

the Web only and not on the text of pages. The idea of using anchor-text for docu-

ment representation has been exploited in the past to attack a variety of information

retrieval problems [2, 8, 13, 14, 20, 48]. Approaches algorithmically related to the ones

presented in Section 2.6 have been used in [9, 12], although for the different problem

of identifying mirror pages.
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Chapter 3

Topic-Sensitive Search

3.1 Introduction1

We discussed in the previous chapter how to discover pages similar to the page the

user is currently browsing. We now turn to the question of how to exploit contextual

information when ranking keyword-search results. Our system performs a series of

offline link-analysis computations on the Web graph to generate a set of ranking

vectors. Then at query time, our system analyzes the query and any available context,

and calculates a final ranking for the query using these ranking vectors. We begin

with a brief background on link-analysis algorithms, and proceed with a detailed

discussion of our system.

Various link-based ranking strategies have been developed for improving Web-

search query results. The HITS algorithm proposed by Kleinberg [48] relies on query-

time processing to deduce the hubs (which are pages that link to “good” pages) and

authorities (which are “good” pages) that exist in a subgraph of the Web consisting

of both the results to a query and the local link-neighborhood of these results. The

query time cost of HITS is nontrivial, as it requires performing iterative link-analysis

computations after the query has been issued by the user.

The PageRank algorithm, introduced by Page et al. [61], precomputes a rank

1This chapter covers work we first presented in [31, 35, 37]. Portions reprinted, with permission,
from “Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm for Web Search,” IEEE

Transactions on Knowledge and Data Engineering, July/August 2003. c©2003 IEEE.
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vector that provides a-priori “importance” estimates for all of the pages on the Web.

In the case of PageRank, “importance” signifies a kind of link-popularity, or how

often a page is linked to by other popular pages. The notion of importance captured

by PageRank has a very precise definition that we discuss in Section 3.1.1. The

traditional PageRank vector is computed once, offline, and is independent of the

search query. At query time, these importance scores are used in conjunction with

query-specific information retrieval (IR) scores, such as term occurrence frequencies,

to rank the query results [8]. PageRank has a clear efficiency advantage over the

HITS algorithm, as the query-time cost of incorporating the precomputed PageRank

importance score for a page is low. Furthermore, as PageRank is generated using the

entire Web graph, rather than a small subset, it is less susceptible to localized link

spam. Figure 3.1 illustrates a system utilizing the standard PageRank scheme.

We propose an approach that (as with HITS) allows query-time information to

influence the link-based score, yet (as with PageRank) requires minimal query-time

processing. In our model, we compute offline a set of topic-sensitive PageRank vec-

tors, each biased to a different topic, to create for each page a set of importance

scores with respect to particular topics [35]. The biasing process involves the intro-

duction of artificial links into the Web graph during the offline rank computation,

and is described further in Section 3.1.1.

Chakrabarti et al. [15] and Pennock et al. [64] demonstrate that the properties

of the Web graph are sensitive to page topic. In particular, it was found that pages

tend to point to other pages that are on the same “broad” topic [64]. Although

this property helps explain why a query-independent PageRank score can be useful

for ranking, it also suggests that we may be able to improve the performance of

link-based computations by taking into account page topics. By making PageRank

topic-sensitive, we avoid the problem of heavily linked pages getting highly ranked for

queries for which they have no particular authority [1]. Pages considered important

in some subject domains may not be considered important in others, regardless of

what keywords may appear either in the page or in anchor text referring to the page.

In this chapter, we consider two scenarios for enhancing keyword-search result

rankings. In the first, we assume a user with a specific information need issues a
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Figure 3.1: Simplified diagram illustrating a simple search engine utilizing the stan-
dard PageRank scheme.

query to our search engine by entering a query into a search box. In this scenario, we

determine the topics most closely associated with the query, and use the appropri-

ate topic-sensitive PageRank vectors for ranking the documents satisfying the query.

This use of topical PageRank vectors ensures that the “importance” scores reflect a

preference for the link structure of pages that have some bearing on the query. As

with ordinary PageRank, the topic-sensitive PageRank score can be used as part of a

scoring function that takes into account other IR-based scores. In the second scenario,

we assume that in addition to the query, additional contextual information available.

For instance, consider the case where a user who is viewing some Web page selects

a phrase from the document for which he would like more information. In addition

to the highlighted phrase, the surrounding terms and the Web page as a whole form

a context for search. As an example, if a query for “architecture” was performed by

highlighting a term in a Web page discussing famous building architects, we would

like different results than if the query “architecture” was performed by highlighting a

term in a page on CPU design. By selecting the appropriate topic-sensitive PageRank

vectors based on the context of the query, we seek to provide more accurate search

results. The history of queries issued by the user also constitutes a form of query

context. Yet another source of context are the user’s bookmarks or favorite pages.

These various sources of search context are discussed in Section 3.4.
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Figure 3.2: Illustration of our system utilizing topic-sensitive PageRank.

A summary of our approach follows. During the offline processing of the Web

crawl, we generate 16 topic-sensitive PageRank vectors, each biased (as described

in Section 3.1.1) using URLs from a top-level category from the Open Directory

Project (ODP) [60]. At query time, we calculate the similarity of the query (and if

available, the query or user context) to each of these topics. Then instead of using

a single, global ranking vector, we take the linear combination of the topic-sensitive

vectors, weighted using the similarities of the query (and any available context) to

the topics. By using a set of topic-sensitive PageRank vectors, we determine more

accurately which pages are truly the most important with respect to a particular

query or query-context. Because the link-analysis computations are performed offline,

during the preprocessing stage, the query-time costs are not much greater than that

of the ordinary PageRank algorithm. An illustration of our topic-sensitive PageRank

system is given in Figure 3.2.
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3.1.1 Preliminaries

In this section we summarize the definition of PageRank [61] and review some of the

mathematical tools we will use in analyzing and improving the standard iterative

algorithm for computing PageRank.2

Underlying the definition of PageRank is the following basic assumption. A link

from a Web page u to a Web page v can be viewed as evidence that v is an “important”

page. In particular, the amount of importance conferred on v by u is proportional to

the importance of u and inversely proportional to the number of pages u points to.

Since the importance of u is itself not known, determining the importance for every

page i ∈ Web requires an iterative fixed-point computation.

We begin with an intuitive look at PageRank computation, and proceed with a

more formal discussion later in the section. PageRank computation consists of a series

of iterations that begins with an arbitrary assignment of ranks to pages, and then

successively improves these ranks. Let ~x(k) represent our estimate of PageRank at

iteration k; i.e., let x
(k)
i represents the rank for page i after iteration k. Since we do

not have any way of knowing the true PageRank values prior to the computation, we

start off with the uniform initial vector ~x(0) = [1/n]n, where n is the number of pages

in our Web graph. In other words, we begin by assigning every page the same rank

(the exact value is irrelevant). This corresponds to the intuition that a-priori, we

guess that all pages have the same importance. Then in each iteration, each page will

distribute its ranks equally to its outlinks. Thus, pages with many inbound links will

accumulate more rank. Note however that the amount of rank a page receives from

an inbound link depends on the rank of the source of that link — this means that the

PageRank computation will assign more rank to pages that have inbound links from

pages with higher rank. This iterative process successively refines the assignment of

ranks to pages, until the change in ranks between two iterations becomes smaller than

some threshold. After this convergence is reached, the rank assigned to every page

is almost exactly the same as the sum of the inbound rank from all of its parents.

This captures the intuition that the rank of page should be based on the number as

2See Bianchini et al. [7] and Langville et al. [51] for a detailed analysis and summary of the
existing research on PageRank.
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inbound links it has as well as the ranks of the source of those links.

To allow for a more rigorous analysis of the necessary computation, we next de-

scribe an equivalent formulation of PageRank in terms of a random walk on the

directed Web graph G. Let u → v denote the existence of an edge from u to v in

G. Let deg(u) be the outdegree of page u in G. Consider a random surfer visiting

page u at time k. In the next time step, the surfer chooses a node vi from among u’s

out-neighbors {v|u → v} uniformly at random. In other words, at time k + 1, the

surfer lands at node vi ∈ {v|u → v} with probability 1/ deg(u).

The PageRank of a page i is defined as the probability that at some particular

time step k > K, the surfer is at page i. For sufficiently large K, and with minor

modifications to the random walk, this probability is unique, illustrated as follows.

Consider the Markov chain induced by the random walk on G, where the states are

given by the nodes in G, and the stochastic transition matrix describing the transition

from i to j is given by P with Pij = 1/ deg(i).

For P to be a valid transition probability matrix, every node must have at least 1

outgoing transition; e.g., P should have no rows consisting of all zeros. This property

holds if G does not have any pages with outdegree 0, which does not hold for the Web

graph. P can be converted into a valid transition matrix by adding a complete set of

outgoing transitions to pages with outdegree 0. In other words, we can define the new

matrix P ′ where all states have at least one outgoing transition in the following way.

Let n be the number of nodes (pages) in the Web graph. Let ~v be the n-dimensional

column vector representing a uniform probability distribution over all nodes:

~v = [
1

n
]n×1 (3.1)

Let ~d be the n-dimensional column vector identifying the nodes with outdegree 0:

di =







1 if deg(i) = 0,

0 otherwise
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Then we construct P ′ as follows:

D = ~d · ~v T

P ′ = P + D

In terms of the random walk, the effect of D is to modify the transition probabilities

so that a surfer visiting a dangling page (i.e., a page with no outlinks) randomly

jumps to a page in the next time step, using the probability distribution given by ~v.

By the Ergodic Theorem for Markov chains [29], the Markov chain defined by P ′

has a unique stationary probability distribution if P ′ is aperiodic and irreducible.3 In

the context of computing PageRank, the standard way of modifying the transition

graph so that these properties are guaranteed to hold is to add a new set of complete

outgoing transitions, with small transition probabilities, to all nodes, creating a com-

plete transition graph. In matrix notation, we construct the irreducible, aperiodic

Markov matrix P ′′ as follows:

E = [1]n×1 × ~v T

P ′′ = cP ′ + (1 − c)E

In terms of the random walk, the effect of E is as follows. At each time step, with

probability (1−c), a surfer visiting any node will jump to a random Web page (rather

than following an outlink). The destination of the random jump is chosen according

to the probability distribution given in ~v. We will refer to artificial jumps taken

because of E as teleportation. The value of c generally used is in the literature is

around 0.85, suggested in the original work on PageRank [61]. For convenience, we

also use α = 1 − c later in the chapter to denote the probability of teleport. The

PageRank vector ~x that we are interested in is precisely the stationary distribution

of the Markov chain P ′′ for a given teleport constant c. The PageRank for page i is

xi.

3For a detailed explanation of these properties, we refer the reader to [44]. For the purposes of
our discussion, these properties are equivalent to saying that the transition graph must be strongly
connected, which is not the case for the Web graph without the modification that follows.
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~y = cP T~x;
w = ||~x||1 − ||~y||1;
~y = ~y + w~v;

Algorithm 1: Computing ~y = A~x

By redefining the vector ~v given in Equation 3.1 to be nonuniform, so that D and

E add artificial transitions with nonuniform probabilities, the resultant PageRank

vector can be biased to prefer certain kinds of pages. For this reason, we refer to ~v

as the personalization vector. We denote to the stationary distribution of P ′′ for a

given ~v (and some fixed c) as the personalized PageRank vector ~x(~v).

For simplicity and consistency with prior work, the remainder of the discussion

will be in terms of the transpose matrix, A = (P ′′)T ; i.e., the transition probability

distribution for a surfer at node i is given by row i of P ′′, and column i of A. Note that

the edges artificially introduced by D and E never need to be explicitly materialized,

so this construction has no impact on efficiency or the sparsity of the matrices used

in the computations. In particular, the matrix-vector multiplication ~y = A~x can be

implemented efficiently using Algorithm 1.

Assuming that the probability distribution over the surfer’s location at time 0 is

given by ~x(0), the probability distribution for the surfer’s location at time k is given

by ~x(k) = Ak~x(0). The unique stationary distribution of the Markov chain is defined

as limk→∞ x(k), which is equivalent to limk→∞ Akx(0), and is independent of the initial

distribution ~x(0). This stationary distribution is simply the principal eigenvector of

the matrix A = (P ′′)T , which is the PageRank vector we would like to compute.

The standard PageRank algorithm computes this principal eigenvector by starting

with the uniform distribution ~x(0) = ~v and computing successive iterates ~x(k+1) =

A~x(k) until convergence (i.e., it uses the power method). This algorithm is summarized

in Algorithm 2. In Chapters 4 and 5, we will discuss the computation of PageRank in

more detail, and introduce algorithms that improve upon the power method on large

Web graphs.



CHAPTER 3. TOPIC-SENSITIVE SEARCH 47

function pageRank(G,~x(0), ~v) {
Construct P from G: Pji = 1/ deg(j);
repeat

~x(k+1) = cP T~x(k);
w = ||~x(k)||1 − ||~x(k+1)||1;
~x(k+1) = ~x(k+1) + w~v;
δ = ||~x(k+1) − ~xk||1;

until δ < ε;

return ~x(k+1);
}

Algorithm 2: PageRank

3.2 Topic-Sensitive PageRank

In our approach to topic-sensitive PageRank, we precompute the importance scores

offline, as with ordinary PageRank. However, for each Web page, we compute an im-

portance score per topic. At query time, these importance scores are combined based

on the topics of the query and associated context to form a composite PageRank score

for those pages matching the query. This score can be used in conjunction with other

IR-based scoring schemes to produce a final rank for the result pages with respect to

the query. As the scoring functions of commercial search engines are not known, in

our work we do not focus on the effect of these IR scores (other than requiring that the

query terms appear in the page).4 We believe that the improvements to PageRank’s

precision will translate into improvements in overall search rankings, even after other

IR-based scores are factored in. Note that the topic-sensitive PageRank score is more

spam-resistant than other types of IR-based scores, making it desirable to depend on

it more heavily.

3.2.1 ODP-biasing

The first step in our approach is to generate a set of biased PageRank vectors using

a set of basis topics. This step is performed once, offline, during the preprocessing of

4For instance, most search engines use term weighting schemes which make special use of HTML
tags.
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the Web crawl. There are many possible sources for the basis set of topics. However,

using a small basis set is important for keeping the preprocessing and query-time

costs low. One option is to cluster the Web-page repository into a small number of

clusters in the hopes of achieving a representative basis. We chose instead to use the

freely available Open Directory Project (ODP) as a source of topics. In this chapter,

we restrict our attention to the 16 top-level categories in the ODP hierarchy.

Let Tj be the set of URLs in the ODP category cj . Then when computing the

PageRank vector for topic cj, in place of the uniform damping vector ~v = [ 1
n
]n×1, we

use the nonuniform vector ~vj where

(vj)i =







1
|Tj | i ∈ Tj,

0 i 6∈ Tj.
(3.2)

The PageRank vector for topic cj is given by ~x(~vj). We also generate the single

unbiased PageRank vector (denoted as NoBias) for the purpose of comparison. The

choice of α will be discussed in Section 3.3.1.

We also compute the term occurrence matrix V , where Vtj is the total number of

occurrences of term t in documents listed below class cj of the ODP.

As mentioned previously, one could envision using other sources of topics; however,

the ODP data is freely available, and as it is compiled by thousands of volunteer

editors, is less susceptible to influence by any one party.

3.2.2 Query-Time Importance Score

The second step in our approach is performed at query time. Given a query q, let

q′ be the context of q. In other words, if the query was issued by highlighting the

term q in some Web page u, then q′ consists of the terms in u. We can also use

only those terms in u nearby the highlighted term, as often times a single Web page

may discuss a variety of topics. For ordinary queries not done in context, let q′ = q.

Using a multinomial naive-Bayes classifier [56], trained on the text of the pages in

the ODP, we compute the class probabilities for each of the 16 top-level ODP classes,

conditioned on q′. Let q′i be the ith term in the query (or query context) q′. Then
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given the query q, we compute for each cj the following:

P (cj|q′) =
P (cj) · P (q′|cj)

P (q′)
∝ P (cj) ·

∏

i

P (q′i|cj) (3.3)

P (q′i|cj) is easily computed from the class term occurrence matrix V . In the absence of

any information about the user, we make P (cj) uniform. For some particular user k,

we can use a prior distribution Pk(cj) that reflects the interests of user k independent

of any particular search query (e.g., by classifying his bookmarks).

Using a text index, we retrieve URLs for all documents containing the original

query terms q. Finally, we compute the query-sensitive importance score of each of

these retrieved URLs as follows. For convenience, let ~rj = ~x(~vj), so that (rj)d is the

rank of a search result d for the topic cj. We compute the query-sensitive importance

score sqd for page d as follows.

sqd =
∑

j

P (cj|q′) · (rj)d (3.4)

The results are ranked according to this composite score sqd, which can be used as

component of a larger scoring function.

The above query-sensitive PageRank computation has the following probabilistic

interpretation, in terms of the “random surfer” model [61]. Let wj be the coefficient

used to weight the jth rank vector, with
∑

j wj = 1 (e.g., let wj = P (cj|q)). Then

since PageRank is linear,5 note that the following equality holds:

∑

j

[wj~x(~vj)] = ~x
(

∑

j

[wj ~vj ]
)

(3.5)

holds. Thus we see that the following random walk on the Web yields the topic-

sensitive score sqd. With probability 1 − α, a random surfer on page u follows an

outlink of u (where the particular outlink is chosen uniformly at random). With

probability αP (cj|q′), the surfer instead jumps to one of the pages in Tj (where the

5See [45], or for a construction of the linear transformation from personalization vectors to per-
sonalized PageRank vectors, see Section 3.5.
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particular page in Tj is chosen uniformly at random). The long term visit probability

that the surfer is at page d is exactly given by the composite score sqd defined above.

Thus, topics exert influence over the final score in proportion to their affinity with

the query (or query context).

3.3 Experimental Results

We conducted a series of experiments to measure the behavior of topic-sensitive Page-

Rank. In Section 3.3.1 we describe the similarity measure we use to compare two

rankings. In Section 3.3.2, we investigate how the induced rankings vary, based on

both the topic used to bias the rank vectors as well as the choice of the bias factor α.

In Section 3.3.3, we present results of a user study showing the retrieval performance

of ordinary PageRank versus topic-sensitive PageRank. In Section 3.3.4, we describe

how query context is utilized in our topic-sensitive PageRank scheme.

As a source of Web data, we used a Web crawl from the Stanford WebBase [41]

performed in January 2001, containing roughly 120 million pages. Our crawl con-

tained roughly 280,000 of the 3 million URLs in the ODP. For our experiments, we

used 35 of the sample queries given in [23], which were in turn compiled from earlier

papers.6 The queries are listed in Table 3.1.

3.3.1 Similarity Measure for Induced Rankings

We use two measures when comparing rankings. The first measure, denoted OSim(τ1, τ2),

indicates the degree of overlap between the top k URLs of two rankings, τ1 and τ2.

We define the overlap of two sets A and B (each of size k) to be |A∩B|
k

. In our compar-

isons we will use k = 20. The overlap measure OSim gives an incomplete picture of

the similarity of two rankings, as it does not indicate the degree to which the relative

orderings of the top k URLs of two rankings are in agreement. Therefore, in addition

to OSim, we use a second measure, KSim, based on Kendall’s τ distance measure.7

6Several queries which produced very few hits on our repository were excluded.
7Note that the schemes for comparing top k lists recently proposed by Fagin et al. [24], also based

on Kendall’s τ distance measure, differ from KSim in the way normalization is done.



CHAPTER 3. TOPIC-SENSITIVE SEARCH 51

Table 3.1: Test queries used.

affirmative action lipari
alcoholism lyme disease
amusement parks mutual funds
architecture national parks
bicycling parallel architecture
blues recycling cans
cheese rock climbing
citrus groves san francisco
classical guitar shakespeare
computer vision stamp collecting
cruises sushi
death valley table tennis
field hockey telecommuting
gardening vintage cars
graphic design volcano
gulf war zen buddhism
hiv zener
java

For consistency with OSim, we will present our definition as a similarity (as op-

posed to distance) measure, so that values closer to 1 indicate closer agreement.

Consider two partially ordered lists of URLs, τ1 and τ2, each of length k. Let U be

the union of the URLs in τ1 and τ2. If δ1 is U − τ1, then let τ ′
1 be the extension of τ1,

where τ ′
1 contains δ1 appearing after all the URLs in τ1.

8 We extend τ2 analogously

to yield τ ′
2. We define our similarity measure KSim as follows:

KSim(τ1, τ2) =
|(u, v) : τ ′

1, τ
′
2 agree on order of (u, v), u 6= v|

(|U |)(|U | − 1)
(3.6)

In other words, KSim(τ1, τ2) is the probability that τ ′
1 and τ ′

2 agree on the relative

ordering of a randomly selected pair of distinct URLs (u, v) ∈ U × U .9

8The URLs in δ are placed with the same ordinal rank at the end of τ .
9A pair ordered in one list and tied in the other is considered a disagreement.
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3.3.2 Effect of ODP-Biasing

In this section we measure the effects of topically biasing the PageRank computation.

First, note that the choice of the bias factor α, discussed in Section 3.1.1, affects the

degree to which the resultant vector is biased towards the topic vector used for ~p.

Consider the extreme cases. For α = 1, the URLs in the bias set Tj will be assigned

the score 1
|T | , and all other URLs receive the score 0. Conversely, as α tends to 0, the

content of Tj becomes irrelevant to the final score assignment.

We heuristically set α = 0.25 after inspecting the rankings for several of the queries

listed in Table 3.1. We did not concentrate on optimizing this parameter; although α

affects the induced rankings of query results, the differences across different topically-

biased PageRank vectors, for a fixed α, are much higher. For instance, for α = 0.05

and α = 0.25, we measured the average similarity of the induced rankings across

our set of test queries, for each of our PageRank vectors.10 The results are given in

Table 3.2. We see that the average overlap between the top 20 results for the two

values of α is high. Furthermore, the high values for KSim indicate high overlap as

well as agreement (on average) on the relative ordering of these top 20 URLs for the

two values of α. Chakrabarti et al. [15] suggest that the ideal choice of α may differ

for different topics; choosing the optimal α for each topic is an avenue for future

study. In the remainder of this chapter, experiments use α = 0.25.

We now discuss the difference between rankings induced by different topically-

biased PageRank vectors. We computed the average, across our test queries, of the

pairwise similarity between the rankings induced by the different topically-biased

vectors. The 5 most similar pairs, according to our OSim measure, are given in

Table 3.3, showing that even the most similar topically-biased rankings have little

overlap. Having established that the topic-specific PageRank vectors each rank the

results substantially differently, we proceed to investigate which of these rankings is

“best” for specific queries.

As an example, Table 3.4 shows the top 4 ranked URLs for the query “bicycling,”

using several of the topically-biased PageRank vectors. Note in particular that the

10We used 25 iterations of PageRank in all cases.



CHAPTER 3. TOPIC-SENSITIVE SEARCH 53

Table 3.2: Average similarity of rankings for α = 0.05 and α = 0.25.

Bias Set OSim KSim

NoBias 0.72 0.64
Arts 0.66 0.58

Business 0.63 0.54
Computers 0.70 0.60

Games 0.78 0.67
Health 0.73 0.62
Home 0.77 0.67

Kids & Teens 0.74 0.66
News 0.74 0.65

Recreation 0.62 0.55
Reference 0.68 0.57
Regional 0.60 0.52
Science 0.69 0.59
Shopping 0.66 0.55
Society 0.57 0.50
Sports 0.69 0.60
World 0.64 0.55

Table 3.3: Topic pairs yielding most similar rankings.

Bias-Topic Pair OSim KSim

(Games, Sports) 0.18 0.13
(NoBias, Regional) 0.18 0.12

(Kids & Teens, Society) 0.18 0.11
(Health, Home) 0.17 0.12

(Health, Kids & Teens) 0.17 0.11
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ranking induced by the Sports-biased vector is of high quality. Also note that the

ranking induced by the Shopping-biased vector leads to the high ranking of Websites

selling bicycle-related accessories.

3.3.3 Query-Sensitive Scoring

In this section we consider the case where the query itself is used to generate the ap-

propriate weights for topic-sensitive PageRank vectors when ranking keyword-search

results. Given a query, our first task is to determine which of the rank vectors can

best rank the results for the query. We found that using the quantity P (cj|q) as

discussed in Section 3.2.2 yielded intuitive results for determining which topics are

most closely associated with a query. In particular, for most of the test queries, the

ODP categories with the highest values for P (cj|q) are intuitively the most relevant

categories for the query. In Table 3.5, we list for several of the test queries the 3

categories with the highest values for P (cj|q). When computing the composite sqd

score in our experiments, we chose to use the weighted sum of only the rank vectors

associated with the three topics with the highest values for P (cj|q), rather than all

of the topics, to avoid introducing unnecessary noise.

To compare our query-sensitive approach to ordinary PageRank, we conducted

a user study. We randomly selected 10 queries from our test set for the study, and

found 5 volunteers. For each query, the volunteer was shown 2 result rankings; one

consisted of the top 10 results satisfying the query, when these results were ranked

with the unbiased PageRank vector, and the other consisted of the top 10 results for

the query when the results were ranked with the composite sqd score.11 The volunteer

was asked to select all URLs which were “relevant” to the query, in their opinion. In

addition, they were asked to mark which of the two rankings was the better of the

two, in their opinion. They were not told anything about how either of the rankings

was generated.

Let a URL be considered relevant if at least 3 of the 5 volunteers selected it

as relevant for the query. The precision then is the fraction of the top 10 URLs

11Both the title and URL were presented to the user. The title was a hyperlink to a current
version of the Web page.
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Table 3.4: Top results for the query “bicycling” when ranked using various topic-
specific vectors.

NoBias

“RailRiders Adventure Clothing”
www.RailRiders.com

www.Waypoint.org/default.html
www.Gorp.com/
www.FloridaCycling.com/

Arts

“Photo Contest & Gallery (Bicycling)”
www.bikescape.com/photogallery/

www.trygve.com/
www.greenway.org/
www.jsc.nasa.gov/Bios/htmlbios/young.html

Business

“Recumbent Bikes and Kit Aircraft”
www.rans.com

www.BreakawayBooks.com
java.oreilly.com/bite-size/
www.carbboom.com

Computers

“GPS Pilot”
www.gpspilot.com

www.wireless.gr/wireless-links.htm
www.linkstosales.com
www.LiftExperts.com/lifts.html

Games

“Definition Through Hobbies”
www.flick.com/˜gretchen/hobbies.html

www.BellaOnline.com/sports/
www.npr.org/programs/wesun/puzzle/will.html
www.trygve.com/

Kids and Teens

“Camp Shohola For Boys”
www.shohola.com

www.EarthForce.org
www.WeissmanTours.com
www.GrownupCamps.com/homepage.html

Recreation

“Adventure travel”
www.gorp.com/

www.GrownupCamps.com/homepage.html
www.gorp.com/gorp/activity/main.htm
www.outdoor-pursuits.org/

Science

“Coast to Coast by Recumbent Bicycle”
hypertextbook.com/bent/

www.SiestaSoftware.com/
www.BenWiens.com/benwiens.html
www.SusanJeffers.com/jeffbio.htm

Shopping

“Cycling Clothing & Accessories for Women”
www.TeamEstrogen.com/

www.ShopOutdoors.com/
www.jub.com.au/books/
www.bike.com/

Sports

“Swim, Bike, Run, & Multisport”
www.multisports.com/

www.BikeRacing.com/
www.CycleCanada.com/
www.bikescape.com/photogallery/



CHAPTER 3. TOPIC-SENSITIVE SEARCH 56

Table 3.5: Estimates for P (cj|q) for a subset of the test queries.

alcoholism

Health 0.47

Kids & Teens 0.20

Arts 0.06

bicycling

Sports 0.52

Regional 0.13

Health 0.07

blues

Arts 0.52

Shopping 0.12

News 0.08

citrus groves

Shopping 0.34

Home 0.21

Regional 0.18

classical guitar

Arts 0.75

Shopping 0.21

News 0.01

computer vision

Computers 0.24

Business 0.14

Reference 0.09

cruises

Recreation 0.65

Regional 0.18

Sports 0.04

death valley

Regional 0.28

Society 0.14

News 0.10

field hockey

Sports 0.89

Shopping 0.03

Reference 0.03

graphic design

Computers 0.36

Business 0.23

Shopping 0.09

gulf war

Society 0.21

Kids & Teens 0.18

Regional 0.17

hiv

Health 0.40

News 0.19

Kids & Teens 0.14

java

Computers 0.53

Games 0.10

Kids & Teens 0.06

lyme disease

Health 0.96

Regional 0.01

Recreation 0.01

mutual funds

Business 0.77

Regional 0.05

Home 0.05

parallel architecture

Computers 0.70

Science 0.10

Reference 0.07

rock climbing

Recreation 0.54

Regional 0.13

Sports 0.07

san francisco

Sports 0.27

Regional 0.16

Recreation 0.10

shakespeare

Arts 0.34

Reference 0.21

Kids & Teens 0.15

table tennis

Sports 0.53

Shopping 0.14

Regional 0.09

telecommuting

Business 0.70

Kids & Teens 0.04

Society 0.03
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Figure 3.3: Precision @ 10 results for our test queries. The average precision over the
ten queries is also shown.

that are deemed relevant. The precision of the two ranking techniques for each test

query is shown in Figure 3.3. The average precision for the rankings induced by

the topic-sensitive PageRank scores is substantially higher than that of the unbiased

PageRank scores; 0.51 vs. 0.28. Furthermore, as shown in Table 3.6, for nearly all

queries, a majority of the users selected the rankings induced by the topic-sensitive

PageRank scores as the better of the two. These results suggest that the effectiveness

of a query-result scoring function can be improved by the use of a topic-sensitive

PageRank scheme in place of a generic PageRank scheme.

3.3.4 Context-Sensitive Scoring

In Section 3.3.3, weights for the topic-sensitive ranking vectors were chosen using the

topics most strongly associated with the query term. If the search is done in context,

for instance by highlighting a term in a Web page and invoking a search, then the

context can be used instead of the query to determine the topics. Using the context

can help disambiguate the query term and yield results that more closely reflect the

intent of the user. We now illustrate how our system exploits query-context.
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Table 3.6: Ranking scheme preferred by majority of users.

Query Preferred by Majority

alcoholism TopicSensitive
bicycling TopicSensitive

citrus groves TopicSensitive
computer vision TopicSensitive

death valley TopicSensitive
graphic design TopicSensitive

gulf war TopicSensitive
hiv NoBias

shakespeare Neither
table tennis TopicSensitive

Consider the query “blues” taken from our test set. This term has several different

senses; for instance it could refer to a musical genre, or to a form of depression. Two

Web pages in which the term is used with these different senses, as well as short textual

excerpts from the pages, are shown in Table 3.7. Consider the case where a user

reading one of these two pages highlights the term “blues” to submit a search query.

At query time, the first step of our system is to determine which topic best applies

to the query in context. Thus, we calculate P (cj|q′) as described in Section 3.2.2,

using for q′ the terms of the entire page. We can also include just a window of terms

surrounding the highlighted query terms, using HTML markers to denote window

boundaries. For the first page (discussing music), argmaxcj
P (cj|q′) is Arts, and for

the second page (discussing depression), argmaxcj
P (cj|q′) is Health. The next step

is to use a text index to fetch a list of URLs for all documents containing the term

“blues” — the highlighted term for which the query was issued. Finally, the URLs

are ranked using the appropriate ranking vector that was selected using the P (cj|q′)
values (i.e., either Arts or Health). Table 3.8 shows the top 5 URLs for the query

“blues” using the topic-sensitive PageRank vectors for Arts, Health. We see that as

desired, most of the results ranked using the Arts-biased vector are pages discussing

music, while all of the top results ranked using the Health-biased vector discuss

depression. The context of the query allows the system to pick the appropriate topic-

sensitive ranking vector, and yields search results reflecting the appropriate sense of

the search term.
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Table 3.7: Two different search contexts for the query “blues.”
That Blues Music Page Postpartum Depression & the ‘Baby Blues’

http://www.fred.net/turtle/blues.shtml http://familydoctor.org/handouts/379.html

. . . If you’re stuck for new material, visit Dan Bowden’s
Blues and Jazz Transcriptions - lots of older blues gui-
tar transcriptions for you historic blues fans . . .

. . . If you’re a new mother and have any of these symp-
toms, you have what is called the “baby blues.” “The
blues” are considered a normal part of early mother-
hood and usually go away within 10 days after de-
livery. However, some women have worse symptoms
or symptoms last longer. This is called “postpartum
depression.” . . .

Table 3.8: Results for query “blues” using two different ranking vectors.
Arts

Britannica Online
www.britannica.com
BandHunt.com Genres (Music)
www.bandhunt.com/genres.html
Artist Information (Music)
www.artistinformation.com/index.html
Billboard.com (Music charts)
www.billboard.com
Soul Patrol (Music)
www.soul-patrol.com

Health

Northern County Psychiatric Associates News
www.baltimorepsych.com/news.htm
Seasonal Affective Disorder
www.ncpamd.com/seasonal.htm
Women’s Mental Health
www.ncpamd.com/Women’s Mental Health.htm
Wing of Madness Depression Support Group
www.wingofmadness.com
Country Nurse Online
www.countrynurse.com
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3.4 Sources of Search Context

In addition to the example described above, there are a variety of sources of context

that may be used with our scheme. For instance, the history of queries issued leading

up to the current query is another form of query context. A search for “basketball”

followed up with a search for “Jordan” presents an opportunity for disambiguating

the latter. As another example, most modern search engines incorporate some sort

of hierarchical directory, listing URLs for a small subset of the Web, as part of their

search interface.12 The current node in the hierarchy that the user is browsing at

constitutes a source of query context. When browsing URLs at Top/Arts, for

instance, any queries issued could have search results (from the entire Web index)

ranked with the Arts rank vector, rather than either restricting results to URLs

listed in that particular category, or not making use of the category whatsoever. In

addition to these types of context associated directly with the query, we can also

utilize user context, such as the user’s bookmarks and recently visited Web pages.

As mentioned in Section 3.2.2, we integrate user context by selecting a nonuniform

prior, Pk(cj), based on how closely the user’s context accords with each of the basis

topics.

When attempting to utilize the aforementioned sources of search context, medi-

ating the personalization of PageRank via a set of basis topics yields several benefits

over attempting to explicitly construct a personalization vector.

Flexibility: For any kind of context, we can compute the context-sensitive

PageRank score by using a classifier to compute the similarity of the context

with the basis topics and then weighting the topic-sensitive PageRank vectors

appropriately. We can treat such diverse sources of search context such as

bookmarks, browsing history, and query history uniformly.

Transparency: The topically-biased rank vectors have intuitive interpreta-

tions. If we see that our system is giving undue preference to certain topics,

we can tune the classifier used on the search context, or adjust topic weights

12See for instance http://directory.google.com/Top/Arts/or http://dir.yahoo.com/Arts/.
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manually. When utilizing user context, the users themselves can be shown what

topics the system believes represent their interests.

Privacy: Certain forms of search context raise potential privacy concerns. This

concern could be alleviated with a client-side program that generates the user

profile locally based on the user’s context, and that sends only the summary

information, consisting of the weights assigned to the basis topics, over to the

server. When making use of query-context, if the user is browsing sensitive

personal documents, they may be more comfortable if the search client sent to

the server topic weights rather than the actual document text surrounding the

highlighted query term.

Efficiency: For a small number of basis topics (such as the 16 ODP categories),

both the query-time cost and the offline preprocessing cost of our approach is

low, and practical to implement with current Web indexing infrastructure.

3.5 Comparison of Approaches to Personalizing

PageRank

As observed in [45], PageRank is linear with respect to the personalization vector

~v. In this section, we derive the linear transformation explicitly, and then discuss

how several approaches to personalizing PageRank can all be characterized as ways

of using a set of basis PageRank vectors to approximate arbitrary personalizations.

Let n be the number of pages on the Web. Recall that ~x(~v) denotes the n-

dimensional personalized PageRank vector corresponding to the n-dimensional per-

sonalization vector ~v. Let ~e be the n-vector whose elements are all ei = 1. ~x(~v) can be

computed by solving the following eigenvalue problem, where A = cP T + (1 − c)~v~eT :

~x = A~x (3.7)
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Rewriting the above, we see that

~x = cP T~x + (1 − c)~v (3.8)

~x − cP T~x = (1 − c)~v (3.9)

(I − cP T )~x = (1 − c)~v (3.10)

I − cP is strictly diagonally dominant, so that I − cP is invertible. Therefore, (I −
cP )T = I − cP T is also invertible. Thus, we get that

~x = (1 − c)(I − cP T )−1~v (3.11)

Let Q = (1−c)(I−cP T )−1. Thus, we see that Q is the linear transformation that gives

us the PageRank vector ~x(~v) given some personalization vector ~v. By letting ~v = ~ei,

where ~ei is the ith elementary vector13 we see that the ith column of the matrix Q

is ~x(~ei), i.e., the personalized PageRank vector corresponding to the personalization

vector ~ei.

The columns of Q comprise a complete basis for personalized PageRank vectors,

as any personalized PageRank vector can be expressed as a convex combination14

of the columns of Q. For any personalization vector ~v, the corresponding personal-

ized PageRank vector is given by Q~v. This formulation corresponds to the original

approach to personalizing PageRank suggested by Page et al. [61] that allows for per-

sonalization on arbitrary sets of pages. Unfortunately, this first approach, which uses

the complete basis for personalized PageRank, is infeasible in practice. Computing

the dense matrix Q offline is impractical, as it amounts to running Algorithm 2 a total

of n times, using every Web page in turn as the sole nonzero element in ~v. Computing

~x(~v) at query time using the Power Method is also impractical.

However, we can compute low-rank approximations of Q, denoted as Q̂, that still

allow us to achieve the benefit of personalized PageRank analysis. Rather than using

a full basis (i.e., all the columns of Q), we can choose to use a reduced basis, e.g.,

13i.e., ~ei has a 1 in the ith component, and zeros elsewhere
14A convex combination is a linear combination where the linear coefficients are nonnegative and

sum to 1.
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using only k ≤ n personalized PageRank vectors, each of which is a column (or

more generally, a convex combination of the columns) of Q. In this case, we cannot

express all personalized PageRank vectors, but only those corresponding to convex

combinations of the PageRank vectors in the reduced basis set:

~x(~w) = Q̂~w (3.12)

where w is a stochastic k-vector representing weights over the k basis vectors.

The following three approaches each approximate Q by the matrix Q̂, although

they differ substantially in their computational requirements and in the granularity

of personalization achieved.

Topic-Sensitive PageRank: The Topic-Sensitive PageRank scheme we discussed

earlier in this chapter computes an n × k approximation to Q using k topics, e.g.,

the 16 top level topics of the Open Directory [60]. Column j of Q̂ is given by ~x(~vj),

where ~vj is a dense vector generated using a classifier for topic Tj ; (vj)i represents the

(normalized) degree of membership of page i to topic j. Note that in this scheme,

each column of Q̂ must be generated independently, so that k must be kept fairly

small (e.g., k < 100). This scheme uses a fairly coarse basis set limiting the degree

to which it can personalize rankings to a specific individual. The use of a good set of

representative basis topics ensures that the approximation Q̂ will be useful. In Topic-

Sensitive PageRank, Q̂ is generated completely offline. Convex combinations are

taken at query time, using the context of the query to compute the appropriate topic

weights. In terms of the random-surfer model of PageRank, this scheme restricts

the choice of teleportation transitions so that the random surfer can teleport to a

topic Tj with some probability wj, followed by a teleport to a particular page i with

probability (vj)i.

Modular PageRank: The Modular PageRank approach proposed by Jeh and

Widom [45] computes an n × k matrix using the k columns of Q corresponding to
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highly ranked pages. In addition, that work provides an efficient scheme for comput-

ing these k vectors, in which partial vectors are computed offline and then composed

at query time, making it feasible to have k ≥ 104. In terms of the random-surfer

model of PageRank, this scheme restricts the choice of teleportation transitions so

that the random surfer can teleport to certain highly ranked pages, rather than to

arbitrarily chosen sets of pages. A direct comparison of the relative granularity of

this approach to the topic-sensitive approach is difficult. Although the basis set

of personalized PageRank vectors is much larger in this scenario, they must come

from personalization vectors ~v with singleton nonzero entries corresponding to highly

ranked pages. However, the larger size of the basis set does allow for finer grained

modulation of rankings.

BlockRank: The personalized BlockRank algorithm we describe in Section 5.4.4 of

Chapter 5 computes an n × k matrix corresponding to k “blocks,” where each block

corresponds to a host, such as www-db.stanford.edu or nlp.stanford.edu. If we restrict

personalizations to the block level, that work computes a matrix Q̂ in which column

j corresponds to ~x(~vj), where ~vj represents the local PageRank of the pages in block

j. The BlockRank algorithm is able to exploit the Web’s inherent block structure

to efficiently compute many of these block-oriented basis vectors, so that k ≥ 103 is

feasible. In terms of the random-surfer model of PageRank, this scheme restricts the

choice of teleportation transitions so that the random surfer can teleport to block (i.e.,

host, rather than page) Bj with probability wj, followed by a teleport to a particular

page i in block Bj with probability (vj)i.

3.6 Related Work

Most relevant our work are the original algorithms for Web graph link-analysis, HITS

and PageRank [48, 61]. Bharat and Henzinger [6] augment the HITS algorithm with

content analysis to improve precision for the task of retrieving documents related to a

query topic (as opposed to retrieving documents that exactly satisfy the user’s infor-

mation need). Chakrabarti et al. [13] make use of HITS for automatically compiling
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resource lists for general topics. Zhang et al. [76] modifies the way teleports are done

in the PageRank random walk to increase the spam-resistance of PageRank. Gyongyi

et al. [30] suggest a PageRank-like computation to identify “trusted” (i.e., nonspam)

pages.

The idea of personalizing the PageRank computation was suggested in the original

work on PageRank [61], although in a form that was not practical on a large scale.

Rafiei and Mendelzon [66] proposed using the set of Web pages that contain some term

as a bias set for influencing the PageRank computation, with the goal of returning

terms for which a given page has a high reputation. An approach for enhancing search

rankings by generating a PageRank vector for each possible query term was proposed

by Richardson and Domingos [68] with favorable results. That approach requires

considerable processing time and storage, and is not easily extended to make use of

user and query context. Diligenti et al. [22] propose topic-specific PageRank scores for

enhancing vertical search, or search geared towards a particular niche of users. Our

approach to biasing the PageRank computation is novel in its use of a small number

of representative basis topics, in conjunction with a classifier, to achieve personalized,

context-sensitive search.



Chapter 4

Computing PageRank by Power

Extrapolation

4.1 Introduction1

Because our approach to context-sensitive search relies on computing many PageRank

vectors, as described in the previous chapter, it is important to speed up the standard

Power Method (presented earlier as Algorithm 2 in Section 3.1.1) used for computing

PageRank. Recall that the Power Method is an iterative algorithm that begins with

an initial vector ~x(0) and successively refines it by repeatedly multiplying by a matrix

corresponding to the Web link graph. In this chapter, we introduce a numerical

technique that uses extrapolation to speed up the computation of PageRank vectors by

reducing the number of iterations required. Extrapolation refers to the use of two or

more vectors from different Power Method iterations (known as iterates) to compute

a better approximation to the PageRank vector. More specifically, extrapolation

techniques eliminate error along what are known as nonprincipal eigenvectors from

the current iterate.2 It is the error along these directions that limits the rate of

convergence of the Power Method iterates to the final value (the principal eigenvector

of the link matrix A). By eliminating them, we can speed up the convergence of the

standard Power Method.

1This chapter covers work we first presented in [32, 40]
2For a detailed discussion on eigenvectors and eigenvalues, we refer the reader to [25].

66
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A practical extrapolation method for accelerating the computation of PageRank,

called Quadratic Extrapolation, was first presented by Kamvar et al. in [47]. That

work assumed that none of the nonprincipal eigenvalues of the Web link matrix were

known. By deriving the eigenvalues of the link matrix, we construct here a simpler

and more effective extrapolation algorithm. We show empirically on an 80 million

page Web crawl that this algorithm speeds up the computation of PageRank by 30%

over the standard Power Method. The speedup in number of iterations is basically

equivalent to that of Quadratic Extrapolation, but the method presented here is much

simpler to implement, and has negligible overhead, so that its wallclock-speedup is

higher by 9%.3

4.2 Experimental Setup

In the following sections, we will be introducing a series of algorithms for comput-

ing PageRank, and discussing the rate of convergence achieved on realistic datasets.

Our experimental setup was as follows. We used a link graph, which we denote as

LargeWeb, generated from a crawl of the Web done by the Stanford WebBase

project in January 2001 [41]. LargeWeb contains roughly 80M nodes, with close

to a billion links, and requires 3.6GB of storage. Dangling pages, which are pages

without outlinks, were removed as described in [61]. The graph was stored using an

adjacency list representation, with pages represented by 4-byte integer identifiers. On

an AMD Athlon 1533MHz machine with a 2-way linear RAID disk volume and 3.5GB

of main memory, each iteration of the Power Method (Algorithm 2 of Section 3.1.1)

on the 80M page LargeWeb dataset takes roughly 10 minutes. Given that the full

Web contains billions of pages, and computing PageRank generally requires roughly

50 applications of Algorithm 1, the need for fast methods is clear.

We measured the relative rates of convergence of the algorithms that follow using

3Note that because the Quadratic Extrapolation algorithm does not assume the second eigenvalue
of the matrix is known, it is more widely applicable (outside of the context of PageRank) than the
algorithms presented here.
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the L1 norm of the residual vector; i.e.,

||Ax(k) − x(k)||1

We show in Appendix 4.A that the residual is a good proxy for measuring the

convergence of the ranking of search results that are induced by successive iterates.

In other words, in the case of PageRank, using the L1 residual to measure how much

the intermediate vector is changing in successive iterations of the Power Method

accurately reflects the degree to which search results change when ranked by the

successive iterates.

4.3 Power Method

We now take a more detailed look at the Power Method, to provide the background

for our extrapolation methods.

4.3.1 Formulation

One way to compute the stationary distribution of a Markov chain is by explicitly

computing the distribution at successive time steps, using ~x(k) = A~x(k−1), until the

distribution converges. This method is called the Power Method for computing the

principal eigenvector of A, and is given as Algorithm 3. The Power Method is the

oldest method for computing the principal eigenvector of a matrix, and is at the heart

of both the motivation and implementation of the original PageRank algorithm. The

original PageRank algorithm is simply Algorithm 3 where Algorithm 1) is used to

perform the matrix-vector multiplication A~x.

The intuition behind the convergence of the power method is as follows. Let us

write our initial vector, ~x(0), as a linear combination of the eigenvectors of A:4

~x(0) = ~u1 + α2~u2 + . . . + αm~um (4.1)

4For simplicity, we have assumed that the start vector ~x(0) lies in the subspace spanned by the
eigenvectors of A. Although this may not hold, it does not affect convergence guarantees.
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function ~x(n) = PowerMethod() {
~x(0) = ~v;
k = 1;
repeat

~x(k) = A~x(k−1);
δ = ||x(k) − x(k−1)||1;
k = k + 1;

until δ < ε;
}

Algorithm 3: Power Method

Recall that when we multiply an eigenvector uk (with corresponding eigenvalue λk)

of some matrix M by the matrix, we get the vector λkuk. Furthermore, recall that

the first eigenvalue of a Markov matrix (such as our Web link matrix A) is 1. Thus,

we have

~x(1) = A~x(0) = ~u1 + α2λ2~u2 + . . . + αmλm~um (4.2)

and

~x(n) = An~x(0) = ~u1 + α2λ
n
2~u2 + . . . + αmλn

m~um (4.3)

Since λn ≤ . . . ≤ λ2 < 1, we know that A(n)~x(0) approaches ~u1 as n grows large.

Therefore, we can see why the Power Method converges to the principal eigenvector

of the Markov matrix A.

4.3.2 Operation Count

A single iteration of the Power Method consists of the single matrix-vector multipli-

cation A~x(k). In general, such a multiplication is an an O(n2) operation (where the

matrix is n × n). However, if the multiplication is performed using Algorithm 1 of

Section 3.1.1, which exploits the sparsity of the underlying link matrix, it is an O(n)

operation. In particular, the average outdegree of pages on the Web has been found

to be around 7 [67]. On our datasets, we observed an average of around 8 outlinks

per page.
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4.3.3 Results and Discussion

If λ2 is close to 1, then the power method is slow to converge, because n must be large

before λn
2 is close to 0. As we show in Section 4.4, the eigengap (i.e., the quantity

|λ1| − |λ2|) for the Web Markov matrix A is given exactly by the teleport probability

1−c. Thus, when the teleport probability is large, the Power Method works reasonably

well. However, for a large teleport probability (and with a uniform personalization

vector ~v), the effect of certain kinds of link spam is increased, and pages can achieve

unfairly high rankings. A high teleport probability means that every page is given a

fixed “bonus” rank. Link spammers can make use of this bonus to generate structures

to inflate the importance of certain pages. Low teleport probabilites can also increase

the effect of spam – in that case, rank sinks, or sets of pages that do not link outside

of their respective set, can have their ranks amplified. Those cases provide some

intuition as to why c is usually kept around 0.85.

In Figure 4.1, we show the convergence on the LargeWeb dataset of the Power

Method for c ∈ {0.80, 0.85, 0.90} using a uniform damping vector ~v. Note that in-

creasing c slows down convergence. Since each iteration of the Power Method takes 10

minutes, computing 50 iterations requires over 8 hours. As the full Web is estimated

to contain over eight billion static pages, using the Power Method on Web graphs

close to the size of the Web would require several days of computation. In the next

sections, we describe how to remove the error components of x(k) along the direc-

tions of certain nonprincipal eigenvectors, thus increasing the effectiveness of Power

Method iterations.

4.4 The Second Eigenvalue of the PageRank Matrix

Before describing our algorithm for accelerating PageRank computations using ex-

trapolation, we first analyze the properties of the nonprincipal eigenvectors of the Web

graph. More specifically, we analytically derive the modulus of the second eigenvalue

of the Web link matrix, as formally stated in the following theorem:5

5The proof that follows was derived jointly in [40].
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Figure 4.1: Comparison of convergence rate for the standard Power Method on the
LargeWeb dataset for c ∈ {0.80, 0.85, 0.90}.

Theorem 1 Let P be an n × n row-stochastic matrix. Let c be a real number such

that 0 ≤ c ≤ 1. Let E be the n × n rank-one row-stochastic matrix E = ~e~vT , where ~e

is the n-vector whose elements are all ei = 1, and ~v is an n-vector that represents a

probability distribution.6

Define the matrix A = [cP + (1 − c)E]T . Its second eigenvalue |λ2| ≤ c.

Theorem 2 Further, if P has at least two irreducible closed subsets (which is the

case for the Web link matrix), then the second eigenvalue of A is given by λ2 = c.

4.4.1 Notation and Preliminaries

P is an n × n row-stochastic matrix. E is the n × n rank-one row-stochastic matrix

E = ~e~vT , where ~e is the n-vector whose elements are all ei = 1 and ~v is an n-vector

whose elements are all non-negative and sum to 1. A is the n × n column-stochastic

matrix:

A = [cP + (1 − c)E]T (4.4)

6I.e., a vector whose elements are nonnegative and whose L1 norm is 1.
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We denote the ith eigenvalue of A by λi, and the corresponding eigenvector by ~xi.

A~xi = λi ~xi (4.5)

By convention, we choose eigenvectors ~xi such that ||~xi||1 = 1. Since A is column-

stochastic, λ1 = 1, and 1 ≥ |λ2| ≥ . . . ≥ |λn| ≥ 0.

We denote the ith eigenvalue of P T as γi, and its corresponding eigenvector as ~yi:

P T ~yi = γi~yi. Since P T is column-stochastic, γ1 = 1, 1 ≥ |γ2| ≥ . . . ≥ |γn| ≥ 0.

We denote the ith eigenvalue of ET as µi, and its corresponding eigenvector as ~zi:

ET ~zi = µi~zi. Since ET is rank-one and column-stochastic, µ1 = 1, µ2 = . . . = µn = 0.

An n × n row-stochastic matrix M can be viewed as the transition matrix for a

Markov chain with n states.

For any row-stochastic matrix M , M~e = ~e.

A set of states S is a closed subset of the Markov chain corresponding to M if and

only if i ∈ S and j 6∈ S implies that Mij = 0.

A set of states S is an irreducible closed subset of the Markov chain corresponding to

M if and only if S is a closed subset, and no proper subset of S is a closed subset.

Intuitively speaking, each irreducible closed subset of a Markov chain corresponds to

a leaf node in the strongly connected component (SCC) graph of the directed graph

induced by the nonzero transitions in the chain.

Note that E, P , and AT are row stochastic, and can thus be viewed as transition

matrices of Markov chains.

4.4.2 Proof of Theorem 1

We first show that Theorem 1 is true for c = 0 and c = 1.

Case 1: c = 0

If c = 0, then, from Equation 4.4, A = ET . Since E is a rank-one matrix, λ2 = 0.
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Thus, Theorem 1 is proved for c=0.

Case 2: c = 1

If c = 1, then, from Equation 4.4, A = P T . Since P T is a column-stochastic matrix,

|λ1| = 1, so that |λ2| ≤ 1. Thus, Theorem 1 is proved for c=1.

Case 3: 0 < c < 1

We prove this case via a series of lemmas.

Lemma 1. The second eigenvalue of A has modulus |λ2| < 1.

Proof. Consider the Markov chain corresponding to AT . If the Markov chain corre-

sponding to AT has only one irreducible closed subchain S, and if S is aperiodic, then

the chain corresponding to AT must have a unique eigenvector with eigenvalue 1, by

the Ergodic Theorem [29]. So we simply must show that the Markov chain corre-

sponding to AT has a single irreducible closed subchain S, and that this subchain is

aperiodic. Lemma 1.1 shows that AT has a single irreducible closed subchain S, and

Lemma 1.2 shows this subchain is aperiodic.

Lemma 1.1 There exists a unique irreducible closed subset S of the Markov chain

corresponding to AT .

Proof. We split this proof into a proof of existence and a proof of uniqueness.

Existence. Let the set U be the states with nonzero components in ~v. Let S consist

of the set of all states reachable from U along nonzero transitions in the chain. S

trivially forms a closed subset. Further, since every state has a transition to U , no

subset of S can be closed. Therefore, S forms an irreducible closed subset.

Uniqueness. Every closed subset must contain U , and every closed subset containing

U must contain S. Therefore, S must be the unique irreducible closed subset of the

chain.

Lemma 1.2 The unique irreducible closed subset S is an aperiodic subchain.
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Proof. From Theorem 5 in the appendix, all members in an irreducible closed subset

have the same period. Therefore, if at least one state in S has a self-transition, then

the subset S is aperiodic. Let u be any state in U . By construction, there exists a

self-transition from u to itself. Therefore, S must be aperiodic.

From Lemmas 1.1 and 1.2, and the Ergodic Theorem, |λ2| < 1 and Lemma 1 is

proved.

Lemma 2. The second eigenvector ~x2 of A is orthogonal to e: ~eT ~x2 = 0.

Proof. Since |λ2| < |λ1| (by Lemma 1), the second eigenvector ~x2 of A is orthog-

onal to the first eigenvector of AT by Theorem 3 in the appendix. From Section 4.4.1,

the first eigenvector of AT is ~e. Therefore, x2 is orthogonal to ~e.

Lemma 3. ET ~x2 = 0

Proof. By definition, E = ~e~vT , and ET = ~v~eT . Thus, ET ~x2 = ~v~eT ~x2. From Lemma 2,

~eT ~x2 = 0. Therefore, ET ~x2 = 0.

Lemma 4. The second eigenvector ~x2 of A must be an eigenvector ~yi of P T , and the

corresponding eigenvalue is γi = λ2/c.

Proof. From Equation 4.4 and Equation 4.5:

cP T ~x2 + (1 − c)ET ~x2 = λ2 ~x2 (4.6)

From Lemma 3 and Equation 4.6, we have:

cP T ~x2 = λ2 ~x2 (4.7)
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We can divide through by c to get:

P T ~x2 =
λ2

c
~x2 (4.8)

If we let ~yi = ~x2 and γi = λ2/c, we can rewrite Equation 4.7.

P T ~yi = γi~yi (4.9)

Therefore, ~x2 is also an eigenvector of P T , and the relationship between the eigenval-

ues of A and P T that correspond to ~x2 is given by:

λ2 = cγi (4.10)

Lemma 5. |λ2| ≤ c

Proof. We know from Lemma 4 that λ2 = cγi. Because P is stochastic, we have

that |γi| ≤ 1. Therefore, |λ2| ≤ c, and Theorem 1 is proved.

4.4.3 Proof of Theorem 2

Recall that Theorem 2 states: If P has at least two irreducible closed subsets, λ2 = c.

Proof.

Case 1: c = 0

This is proven in Case 1 of Section 4.4.2.

Case 2: c = 1

This is proven trivially from Theorem 3 in the appendix.

Case 3: 0 < c < 1

We prove this case as follows. We assume P has at least two irreducible closed subsets.
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We then construct a vector xi that is an eigenvector of A and whose corresponding

eigenvalue is λi = c. Therefore, |λ2| ≥ c, and there exists a λi = c. From Theorem 1,

λ2 ≤ c. Therefore, if P has at least two irreducible closed subsets, then λ2 = c.

Lemma 6. Any eigenvector yi of P T that is orthogonal to e is an eigenvector xi

of A. The relationship between eigenvalues is λi = cγi.

Proof. It is given that ~eT ~yi = 0. Therefore,

ET ~yi = ~v~eT ~yi = 0 (4.11)

By definition,

P T ~yi = γi~yi (4.12)

Therefore, from Equations 4.4, 4.11, and 4.12,

A~yi = cP T ~yi + (1 − c)ET ~yi = cP T ~yi = cγi~yi (4.13)

Therefore, A~yi = cγi~yi and Lemma 6 is proved.

Lemma 7. There exists a λi = c.

Proof. We construct a vector ~xi that is an eigenvector of P and is orthogonal to

~e. From Theorem 3 in the appendix, the multiplicity of the eigenvalue 1 for P is

equal to the number of irreducible closed subsets of P . Thus we can find two linearly

independent eigenvectors ~y1 and ~y2 of P T corresponding to the dominant eigenvalue

1. Let

k1 = ~y1
T~e (4.14)

k2 = ~y2
T~e (4.15)
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If k1 = 0, let ~xi = ~y1, else if k2 = 0, let ~xi = ~y2. If k1, k2 > 0, then let ~xi =

~y1/k1 − ~y2/k2. Note that ~xi is an eigenvector of P T with eigenvalue exactly 1 and

that xi is orthogonal to e. From Lemma 6, ~x2 is an eigenvector of A corresponding

to eigenvalue c. Therefore, the eigenvalue λi of A corresponding to eigenvector ~xi is

λi = c.

Therefore, |λ2| ≥ c, and there exists a λi = c. However, from Theorem 1, λ2 ≤ c.

Therefore, λ2 = c and Theorem 2 is proved.7

4.5 Extrapolation Methods

Using the proof given in the previous section that the modulus of the second eigenvalue

of A is given by the damping factor c, we derive here extrapolation methods that are

easy to implement. We present a series of algorithms that exploit known eigenvalues

of A to accelerate the Power Method for computing PageRank. In particular, one

class of nonprincipal eigenvectors of A correspond to simple cycles of different lengths

embedded in the Web. As a simple example, consider a Web graph with two pages

that form a cycle. Assuming a random jump factor of c = 0.8, we have the following

link matrix:

A = .8

(

0 1

1 0

)

+ .2

(

0.5 0.5

0.5 0.5

)

=

(

0.1 0.9

0.9 0.1

)

Notice that the vector

~x =

(

1

−1

)

is an eigenvector of A with eigenvalue −0.8:

A~x =

(

−0.8

0.8

)

= −0.8~x

7As we will see in the next section, there may be additional eigenvalues with modulus c, such as
−c.
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Longer cycles lead to additional eigenvectors with modulus c, including those that

include imaginary components and have imaginary eigenvalues (e.g., c, −c, ci, and

−ci) [44]. We will see in Sections 4.5.2 and 4.5.3 how we can use extrapolation

to eliminate these kinds of eigenvectors to speed up the convergence of the Power

Method.

4.5.1 Simple Extrapolation

Formulation

The simplest extrapolation rule naively assumes that the iterate ~x(k−1) can be ex-

pressed as a linear combination of the eigenvectors u1 and u2, where u2 has eigenvalue

c.

~x(k−1) = ~u1 + α2~u2 (4.16)

Now consider the current iterate ~x(k); because the Power Method generates iterates

by successive multiplication by A, we can write ~x(k) as

~x(k) = A~x(k−1) (4.17)

= A(~u1 + α2~u2) (4.18)

= ~u1 + α2λ2~u2 (4.19)

Plugging in λ2 = c, we see that

~x(k) = ~u1 + α2c~u2 (4.20)

The above allows us to solve for ~u1 in closed form:

~u1 =
~x(k) − c~x(k−1)

1 − c
(4.21)
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Figure 4.2: Comparison of convergence rates for Power Method and Simple Extrap-
olation on LargeWeb for c = 0.85. Notice that convergence is slower, making this
an ineffective extrapolation technique.

Results and Discussion

Figure 4.2 shows the convergence of Simple Extrapolation and the standard Power

Method, where there was one application of Simple Extrapolation at iteration 3 of

the Power Method. Simple Extrapolation is not effective, as the assumption that c is

the only eigenvalue of modulus c is inaccurate. In fact, by doubling the error in the

eigenspace corresponding to eigenvalue −c, this extrapolation technique slows down

the convergence of the Power Method.

4.5.2 A2 Extrapolation

Formulation

The next extrapolation rule assumes that the iterate ~x(k−2) can be expressed as a

linear combination of the eigenvectors u1, u2, and u3, where u2 has eigenvalue c and

u3 has eigenvalue −c.

~x(k−2) = ~u1 + α2~u2 + α3~u3 (4.22)

Now consider the current iterate ~x(k); because the Power Method generates iterates
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by successive multiplication by A, we can write ~x(k) as

~x(k) = A2~x(k−2) (4.23)

= A2(~u1 + α2~u2 + α3~u3) (4.24)

= ~u1 + α2λ
2
2~u2 + α2λ

2
3~u3 (4.25)

Plugging in λ2 = c and λ3 = −c, we see that

~x(k) = ~u1 + c2(α2~u2 + α3~u3) (4.26)

Equations 4.22 and 4.26 allow us to solve for ~u1 in closed form:

~u1 =
~x(k) − c2~x(k−2)

1 − c2
(4.27)

Since our assumption that the iterate ~x(k−2) can be expressed as a linear combina-

tion of only u1, u2, and u3 does not hold in practice, Equation 4.27 gives us an

approximation to the first eigenvector, to which we must continue applying Power

Method iterations to reach convergence. In particular, A2 Extrapolation eliminates

error along the eigenspaces corresponding to eigenvalues of c and −c, leaving error

along the direction of the other eigenvectors.

Results and Discussion

Figure 4.3 shows the convergence of A2 extrapolated PageRank and the standard

Power Method, where A2 Extrapolation was applied once at iteration 4. Empirically,

A2 extrapolation speeds up the convergence of the Power Method by 18%. The initial

effect of the application increases the residual, but by correctly subtracting off much

of the largest non-principal eigenvectors, the convergence upon further iterations of

the Power Method is sped up.
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Figure 4.3: Comparison of convergence rates for Power Method and A2 Extrapolation
on LargeWeb for c = 0.85.

4.5.3 Ad Extrapolation

Formulation

The previous extrapolation rule made use of the fact that (−c)2 = c2. We can

generalize that derivation to the case where the eigenvalues of modulus c are given

by {cζ1, · · · , cζd}, where ζk is a dth root of unity. From Theorem 2.1 of [40] and

Theorem 6 given in the Appendix, it follows that these eigenvalues arise from leaf

nodes in the strongly connected component (SCC) graph of the Web that are cycles

of length d. Because we know empirically that the Web has such leaf nodes in the

SCC graph, it is likely that eliminating error along the dimensions of eigenvectors

corresponding to these eigenvalues will speed up PageRank.

We make the assumption that ~x(k−d) can be expressed as a linear combination of

the eigenvectors {u1 . . . ud+1}, where the eigenvalues of {u2 . . . ud+1} are the dth roots

of unity, scaled by c.

~x(k−d) = ~u1 +
d+1
∑

i=2

αi~ui (4.28)
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function ~x∗ = PowerExtrapolation(~x(k−d), ~x(k)) {
~x∗ = (~x(k) − cd~x(k−d))(1 − cd)−1;
}

Algorithm 4: Power Extrapolation

Then consider the current iterate ~x(k); because the Power Method generates iter-

ates by successive multiplication by A, we can write ~x(k) as

~x(k) = Ad~x(k−d) (4.29)

= Ad(~u1 +
d+1
∑

i=2

αi~ui) (4.30)

= ~u1 +
d+1
∑

i=2

αiλ
d
i ~ui (4.31)

(4.32)

But since λi is cdi, where di is a dth root of unity,

~x(k) = ~u1 + cd
d+1
∑

i=2

αi~ui (4.33)

Equations 4.28 and 4.33 allow us to solve for ~u1 in closed form:

~u1 =
~x(k) − cd~x(k−d)

1 − cd
(4.34)

For instance, for d = 4, the assumption made is that the nonprincipal eigenvalues

of modulus c are given by c, −c, ci, and −ci (i.e., the 4th roots unity). A graph in

which the leaf nodes in the SCC graph contain only cycles of length l, where l is any

divisor of d = 4 has exactly this property.

Algorithms 4 and 5 show how to use Ad Extrapolation in conjunction with the

Power Method. Note that Power Extrapolation with d = 1 is just Simple Extrapola-

tion.
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function ~x(n) = ExtrapolatedPowerMethod(d) {
~x(0) = ~v;
k = 1;
repeat

~x(k) = A~x(k−1);
δ = ||x(k) − x(k−1)||1;
if k == d + 2,

~x(k) = PowerExtrapolation(~x(k−d), ~x(k));
k = k + 1;

until δ < ε;
}

Algorithm 5: Power Method with Power Extrapolation

Operation Count

The overhead in performing the extrapolation shown in Algorithm 4 comes from

computing the linear combination (~x(k) − cd~x(k−d))(1 − cd)−1, an O(n) computation.

In our experimental setup, the overhead of a single application of Power Extrapo-

lation is 1% the cost of a standard power iteration. Furthermore, Power Extrapolation

needs to be applied only once to achieve the full benefit.

Results and Discussion

In our experiments, Ad Extrapolation performs the best for d = 6. Figure 4.4 plots

the convergence of Ad Extrapolation for d ∈ {1, 2, 4, 6, 8}, as well as of the standard

Power Method, for c = 0.85 and c = 0.90.

The wallclock speedups, compared with the standard Power Method, for these 5

values of d for c = 0.85 are given in Table 4.1.

For comparison, Figure 4.5 compares the convergence of the Quadratic Extrap-

olated PageRank with A6 Extrapolated PageRank. Note that the speedup in con-

vergence is similar; however, A6 Extrapolation is much simpler to implement, and

has negligible overhead, so that its wallclock-speedup is higher. In particular, each

application of Quadratic Extrapolation requires 32% of the cost of an iteration, and

must be applied several times to achieve maximum benefit.



CHAPTER 4. COMPUTING PAGERANK BY POWER EXTRAPOLATION 84

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0  10  20  30  40  50  60

L1
 r

es
id

ua
l

# of iterations

NoAccel
A^1
A^2
A^4
A^6
A^8

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0  10  20  30  40  50  60  70  80  90

L1
 r

es
id

ua
l

# of iterations

NoAccel
A^1
A^2
A^4
A^6
A^8

(a) c=0.85 (b) c=0.90

Figure 4.4: Convergence rates for Ad Extrapolation, for d ∈ {1, 2, 4, 6, 8}, compared
with standard Power Method.

Table 4.1: Wallclock speedups for Ad Extrapolation, for d ∈ 1, 2, 4, 6, 8, and Quadratic
Extrapolation

Type speedup

d = 1 -28%
d = 2 18%
d = 4 25.8%
d = 6 30%
d = 8 21.8%

Quadratic 20.8%

4.6 Related Work

Speeding up PageRank computations has become a very active field of research. Arasu

et al. [3] investigate using Gauss-Seidel iterations, in which new values for pages

computed early in a given iteration can be used when computing new PageRank

values later in the same iteration. Chien et al. [16] and Langville and Meyer [50]

suggest ways of speeding up PageRank in the context of updates, where we assume

we have computed PageRank for a Web crawl, and would like to update the ranks

given a newer crawl. Lee et al. [52] introduce a technique called lumping to speed

up PageRank by treating all dangling nodes (e.g., pages with no outlinks) as a single
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Figure 4.5: Comparison of convergence rates for Power Method, A6 Extrapolation,
and Quadratic Extrapolation on LargeWeb for c = 0.85.

node during part of the computation. Broder et al. suggest a technique for computing

PageRank using graph aggregation, where sets of nodes are treated as supernodes;

their algorithm is similar to the block-oriented algorithms we present in Chapter 5.
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4.A Measures of Convergence

In this section, we present empirical results demonstrating the suitability of the L1

residual, even in the context of measuring convergence of induced document rankings.

In measuring the convergence of the PageRank vector, prior work has usually relied

on δk = ||Ax(k) − x(k)||p, the Lp norm of the residual vector, for p = 1 or p = 2,

as an indicator of convergence. Given the intended application, we might expect

that a better measure of convergence is the distance, using an appropriate measure

of distance, between the rank orders for query results induced by Ax(k) and x(k).

We use two measures of distance for rank orders, both based on the the Kendall’s-τ

rank correlation measure: the KDist measure, defined below, and the Kmin measure,

introduced by Fagin et al. in [24]. To see if the residual is a “good” measure of

convergence, we compared it to the KDist and Kmin of rankings generated by Ax(k)

and x(k).

We show empirically that in the case of PageRank computations, the L1 residual

δk is closely correlated with the KDist and Kmin distances between query results

generated using the values in Ax(k) and x(k).

Our distance measure KDist is defined in terms of the KSim similarity measure

we introduced in Section 3.3.1. Consider two partially ordered lists of URLs, τ1 and

τ2, each of length k. We define KDist as

KDist(τ1, τ2) = 1 − KSim(τ1, τ2) (4.35)

In other words, KDist(τ1, τ2) is the probability that the the two ordered lists disagree

on the relative order of a pair of URLs.

To measure the convergence of PageRank iterations in terms of induced rank

orders, we measured the KDist distance between the induced rankings for the top

100 results, averaged across 27 test queries, using successive power iterates for the

LargeWeb dataset, with the damping factor c set to 0.9.8 The average residuals

8Computing Kendall’s τ over the complete ordering of all of LargeWeb is expensive; instead
we opt to compute KDist and Kmin over query results.
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Figure 4.6: Comparison of the L1 residual, KDist and Kmin for PageRank iterates.
Note that the two curves nearly perfectly overlap, suggesting that in the case of
PageRank, the easily calculated L1 residual is a good measure for the convergence of
query-result rankings.

using the KDist, Kmin, and L1 measures are plotted in Figure 4.6.9 Surprisingly, the

L1 residual is almost perfectly correlated with KDist, and is closely correlated with

Kmin.
10 A rigorous explanation for the close match between the L1 residual and the

Kendall’s τ based residuals is an interesting avenue of future investigation.

9The L1 residual δk is normalized so that δ0 is 1.
10We emphasize that we have shown close agreement between L1 and KDist for measuring resid-

uals, not for distances between arbitrary vectors.
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4.B External Theorems

For convenience, we include in this appendix theorems that are proven elsewhere that

are cited in this chapter.

Theorem 3 (from page 126 of [44]) If P is the transition matrix for a finite Markov

chain, then the multiplicity of the eigenvalue 1 is equal to the number of irreducible

closed subsets of the chain.

Theorem 4 (from page 4 of [73]) If ~xi is an eigenvector of A corresponding to the

eigenvalue λi, and ~yj is an eigenvector of AT corresponding to λj, then ~xi
T ~yj = 0 (if

λi 6= λj).

Theorem 5 (from page 82 of [43]) Two distinct states belonging to the same class

(irreducible closed subset) have the same period. In other words, the property of having

period d is a class property.

Theorem 6 (Theorem IV.2.5 from [44]) If P is the transition matrix of an irre-

ducible periodic Markov chain with period d, then the dth roots of unity are eigenval-

ues of P . Further, each of these eigenvalues is of multiplicity one and there are no

other eigenvalues of modulus 1.



Chapter 5

Block-Oriented PageRank

Computation

5.1 Introduction1

In this chapter, we consider block-oriented approaches to speeding up the compu-

tation of PageRank. We present two block-oriented algorithms; the first makes no

assumptions about the empirical properties of the Web’s graph structure, but uses a

block-oriented technique for memory-efficient computation; the second, BlockRank,

exploits the inherent “block structure” of the Web link graph to further speed up the

computation. Block structure refers to the tendency of pages to link to other pages

on the same host. Analysis of the graph structure of the Web has concentrated on

determining various properties of the graph, such as degree distributions and con-

nectivity statistics, and on modeling the creation of the Web graph [5]. However,

this research has not directly addressed how this inherent structure can be exploited

effectively to speed up link analysis. Raghavan and Garcia-Molina [67] have exploited

the hostname (or more generally, URL)-induced structure of the Web to represent the

Web graph efficiently. BlockRank directly exploits this kind of structure to achieve

speedups for computing PageRank by

1This chapter covers joint work we first presented in [33, 46]

89
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• Substantially improving locality of reference, thereby reducing disk i/o costs

and memory access costs,

• Reducing the computational complexity (i.e., number of FLOPS).

• Allowing for highly parallelizable computations requiring little communication

overhead,

• Allowing reuse of previous computations when updating PageRank and when

computing multiple topic-sensitive PageRank vectors.

5.2 The Naive Algorithm for Computing PageRank

The implementation of PageRank on small graphs is simple. Computing PageRank

on Web-scale link-graphs, however, requires much greater care in the use of data

structures. We begin with a detailed discussion of a naive implementation to gain a

clear understanding of the system issues involved for matrix-vector multiplications in

the specific context of PageRank.

The link structure for the Web graph, referred to as L, is stored on disk in a

binary format, illustrated textually in Figure 5.1.

Figure 5.1: Depiction of the datastructure holding the Web hyperlink graph.

The source-id and each of the destination-id’s are stored as 32-bit integers. The

outdegree is stored as a 16-bit integer. For an 81-million node dataset (described in



CHAPTER 5. BLOCK-ORIENTED PAGERANK COMPUTATION 91













y1

.

.

.
yn













= c













L11 . . . L1n

. . . . .
Lj1 . Ljk . Ljn

. . . . .
Ln1 . . . Lnn













×













x1

.

.

.
xn













+ (1 − c)













v1

.

.

.
vn













Figure 5.2: Matrix-vector multiplication corresponding to a PageRank iteration. This
figure illustrates Algorithm 1 that was given in Section 3.1.1. If page k links to page
j, then Ljk is 1/ deg(k). Note that L is very sparse, since most pages have only a
few outlinks. For unpersonalized computations, ~v is uniform, in which case we do
not materialize it explicitly so that it requires no memory. For personalized or topic-
sensitive computations, ~v generally has on the order of thousands of nonzero entries,
in which case it is sparse enough to require negligible memory. ~x and ~y are dense,
and must be maintained explicitly, either in memory or on disk.

Section 5.3.1) the size of the link structure is 1.01 GB, and is assumed to exceed the

size of main memory. Although modern machines can contain several gigabytes of

memory, the Web has grown to billions of pages, so that this assumption is still valid.

The setup for the naive PageRank implementation is as follows. We create two

arrays of floating point values representing the source and destination rank vectors,

denoted by ~x and ~y resp., as shown in the matrix-vector multiplication given in Fig-

ure 5.2. Each vector has n entries, where n is the number of nodes in our Web graph.

The naive implementation of the PageRank computation2 is given as Algorithm 6.

We make successive passes over L, using the current rank values held in ~x, to

compute the rank values for the subsequent iteration, held in ~y. We can stop it-

erating when the residual, defined as the norm of the difference between ~x and ~y,

reaches some threshold. Recall from Appendix 4.A that the residual is a good proxy

for measuring the convergence of the document rankings induced by the successive

PageRank iterates.

Assuming main memory is large enough to hold ~x and ~y, the i/o cost for each

2See Section 3.1.1 of Chapter 3.
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function NaivePageRank(L, ~v, c) {
~x = ~v;
while δ > τ do

~y = ~0n;
while not L.eof() do

L.read(source, m, dest1, dest2, ..., destm);
for j = 1 . . .m do

ydestj
= ydestj

+ c
m

xsource ;
end

end
// use a sparse representation for ~v
~y = ~y + (1 − c)~v ;
// compute the following only periodically

δ = ‖x − y‖1 ;
~x = ~y;

end
}

Algorithm 6: Naive PageRank algorithm. As first introduced in Section 3.1.1,
~v is the personalization vector, and c is the damping factor.

iteration of the above implementation is given by:

C = sizeof(L)

If main memory is large enough to hold only ~y, and we assume that the link structure

is sorted on the source field, the i/o cost is given by:

C = sizeof(~x) + sizeof(~y) + sizeof(L)

~x needs to be read sequentially from disk during the rank propagation step, and ~y

needs to be written to disk to serve as the source vector for the subsequent iteration.

A large Web crawl with billions of pages will result in rank vectors that exceed

the main memory of most computers. As mentioned above, if the link structure is

sorted on the source field, the accesses on ~x will be sequential, and will not pose

a problem. However, the random access pattern on ~y leads the working set of this
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Figure 5.3: Block-oriented multiplication with 3 blocks. Each block-multiply requires
a full pass over ~x, but only involves 1/3 of ~y, L, and ~v.

implementation to equal sizeof(~y). As we will see in Section 5.3.1, if main memory

cannot accommodate ~y, the running time will increase dramatically and the above

cost analysis becomes invalid.

5.3 Memory-Efficient Computation of PageRank

We now describe how we can control the working set of the PageRank algorithm by

partitioning the destination vector ~y, the cause of the large working set, into β blocks

each of size b, as illustrated in Figure 5.3.3 The links file L must be rearranged to

reflect this setup. We partition L into β links files L0, . . . ,Lβ−1, such that the dest

field in Li contains only nodes in the set {u|b× i ≤ u < b× (i + 1)}. In other words,

the outgoing links of a node are bucketed according to the range that the identifier

3If the number of pages n is not divisible by β, the final block of ~y can be padded.
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Figure 5.4: Partitioned link file.

of the destination page falls into. The partitioning of the links of Figure 5.1 for the

case of β = 3 is shown in Figure 5.4. Note that
∑

sizeof(Li) > sizeof(L) because of

the extra overhead caused by the redundant storage of the source node and outdegree

entries in each of the partitions. The block-oriented algorithm is given as Algorithm 7.

Because Li is sorted on the source field, each pass through Li requires only one

sequential pass through ~x. By choosing a large enough β, we can ensure the working

set of the algorithm fits in main memory, so that no swapping occurs. Define ε to be

such that
∑

i

sizeof(Li) = (1 + ε) · sizeof(L)

The i/o cost of this approach is then given by:

C = β · sizeof(~x) + sizeof(~y) + (1 + ε) · sizeof(L)

In practice, ε is reasonably small, as shown in Table 5.2. The other cost introduced

by the partitioning scheme is the need to make β passes over the source vector ~x.
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function MemEffPageRank(L, ~v, c) {
~x = ~v ;
while δ > τ do

for i = 0 . . . β − 1 do
~y(i) = ~0b ;
while not Li.eof() do

Li.read(source, m, k, dest1, dest2, ..., destk) ;
for j = 1 . . . k do

y
(i)
destj

= y
(i)
destj

+ c
m

xsource ;

end

end
// use a sparse representation for ~v
~y(i) = ~y(i) + (1 − c) ~v(i) ;

OutputToDisk( ~y(i)) ;
end
// compute the following only periodically

δ = ‖x − y‖1 ;
~x = ~y ;

end
}

Algorithm 7: Memory-efficient PageRank algorithm.
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However, since in practice we have sizeof(L) > 5 ·sizeof(~x), this additional overhead

is reasonable. Note that computing the residual during every iteration would require

an additional pass over ~x, which is not included in the above cost analysis. We can

largely avoid this cost by computing the residual only at fixed intervals.

If we had stored the links in transpose format LT , in which each entry contained

a node and a list of parent nodes, then the above algorithm would remain essentially

the same, except that we would break the source vector ~x into β blocks, and make

multiple passes over the destination vector ~y. We would successively load in blocks

of ~x, and fully distribute its rank according to LT to all destinations in ~y. However,

note that each “pass” over ~y requires reading in the values from disk, adding in the

current source block’s contributions, and then writing out the updated values to disk.

Thus, using LT rather than L incurs an additional i/o cost of sizeof(~y), since ~y is

both read and written on each pass.

5.3.1 Experimental Results

At the time of these experiments, the Stanford WebBase, our local repository of the

Web, contained roughly 25 million pages. There are roughly 81 million URLs in the

corresponding link graph, including URLs that were not themselves crawled, but exist

in the bodies of crawled pages. For our experiments, we first used a preprocessing

step that removed dangling pages, meaning pages with no outlinks. Starting with

the 81-million-node graph, all nodes with outdegree 0 were removed. The step was

repeated once more on the resulting graph, yielding a subgraph with close to 19

million nodes. This process was used since the original graph is a truncated snapshot

of the Web with many dangling nodes. The node id’s were assigned consecutively

from 0 to 18,922,290.

We used a 450MHz Pentium-III machine with a 7200-RPM Western Digital Caviar

AC418000 hard disk. We measured the running times of PageRank over roughly 19

million pages using three different partitionings: 1-block (i.e., naive), 2-blocks, and

4-blocks. The expected memory usage is given in Table 5.1. We tested the three

partitioning strategies on three different memory configurations: 256 MB, 64 MB,

and 32 MB.
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Number of Blocks Expected Working Set
1 72 MB
2 36 MB
4 18 MB

Table 5.1: Expected memory usage for different numbers of blocks.

Figure 5.5: Log plot of running times.

The time required per iteration of PageRank is given for each of the three parti-

tionings under each of the three memory configurations in Figure 5.5. As expected,

the most efficient strategy is to partition the destination vector ~y into enough blocks

so that a single block of ~y can fit in physical memory. Using too many blocks slightly

degrades performance, as both the number of passes over ~x and the size of L increase.

Table 5.2 shows the total size of the link structure for the three partitionings, as

well as the associated ε, as discussed in Section 5.3. Using too few blocks, however,

degrades performance by several orders of magnitude. For the cases in Figure 5.5

where the block size exceeds physical memory, we had to estimate the full iteration

time from a partially completed iteration.

The block-oriented strategy is very effective in controlling the memory require-

ments of PageRank computations. This block-oriented PageRank is not an approx-

imation of normal PageRank: the same matrix-vector multiplication is performed
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Number of Blocks Size of L ε
1 1.01 GB 0
2 1.14 GB 0.13
4 1.29 GB 0.28

Table 5.2: Overhead of partitioned link structure.

whether or not L is partitioned. For billions of pages, the block-oriented technique

is essential in computing PageRank, even on machines with fairly large amounts of

main memory.

5.4 Exploiting the Inherent Block Structure of the

Web

In the previous section, we did not exploit any of the inherent properties of the Web

graph. In this section, we take a detailed look at the structure of the Web graph, and

introduce an algorithm, BlockRank, for efficiently computing PageRank by exploiting

this structure.

5.4.1 Description of Datasets

We begin with a description of the two datasets we used for this set of experiments.

The Stanford/Berkeley link graph was generated from a crawl of the stanford.edu

and berkeley.edu domains done in December 2002 by the Stanford WebBase project.

This link graph (after dangling node removal, discussed below) contains roughly

683,500 nodes, with 7.6 million links, and requires 25MB of storage. We used Stan-

ford/Berkeley while developing the algorithms, to get a sense for their expected

performance. For real-world performance measurements, we use the LargeWeb link

graph, generated from a crawl of the Web done by the Stanford WebBase project in

January 2001 [41]. The full version of this graph, termed Full-LargeWeb, con-

tains roughly 290M nodes, just over a billion edges, and requires 6GB of storage.

Many of these nodes are dangling nodes (pages with no outlinks), either because the

pages genuinely have no outlinks, or because they are pages that have been discovered
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Term Example: cs.stanford.edu/research/
top level domain edu
domain stanford.edu
hostname cs
host cs.stanford.edu
path /research/

Table 5.3: Example illustrating our terminology using the sample URL
http://cs.stanford.edu/research/.

Domain Host

Full Intra 953M links 83.9% 899M links 79.1%
Inter 183M links 16.1% 237M links 20.9%

DNR Intra 578M links 95.2% 568M links 93.6%
Inter 29M links 4.8% 39M links 6.4%

Table 5.4: Hyperlink statistics on LargeWeb for the full graph (Full: 291M nodes,
1.137B links) and for the graph with dangling nodes removed (DNR: 64.7M nodes,
607M links).

but not crawled. We also consider the version of LargeWeb with dangling nodes

removed, termed DNR-LargeWeb, which contains roughly 70M nodes, with over

600M edges, and requires 3.6GB of storage.

5.4.2 Block Structure of the Web

The key terminology we use in the remaining discussion is given in Table 5.3. To

investigate the structure of the Web, we performed the following simple experiment.

We took all the hyperlinks in Full-LargeWeb, and counted how many of these

links are “intra-host” links (links from a page to another page in the same host) and

how many are “inter-host” links (links from a page to a page in a different host).

Table 5.4 shows that 79.1% of the links in this dataset are intra-host links, and 20.9%

are inter-host links. These intra-host connectivity statistics are not far from the

earlier results of Bharat et al. [5]. We also investigated the number of links that are

intra-domain links, and the number of links that are inter-domain links. Notice in

Table 5.4 that an even larger majority of links are intra-domain links (83.9%).
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These results are intuitive. Take as an example the domain cs.stanford.edu. Most

of the links in cs.stanford.edu are near the cs.stanford.edu site (such as cs.stanford.edu

/admissions, or cs.stanford.edu/research). Furthermore, almost all non-navigational

links are links to other Stanford hosts, such as www.stanford.edu, library.stanford.edu,

or www-cs-students.stanford.edu.

One might expect this structure exists in lower levels of the Web hierarchy as well.

For example, one might expect that pages under cs.stanford.edu/admissions/ are highly

interconnected, and very loosely connected with pages in other sublevels, leading to a

nested block structure. This type of nested block structure can be naturally exposed

by sorting the link graph to construct a link matrix in the following way. We sort

URLs lexicographically, except that as the sort key, we reverse the components of the

domain. For instance, the sort key for the URL www.stanford.edu/home/students/

would be edu.stanford.www/home/students. The URLs are then assigned sequential

identifiers when constructing the link matrix. A link matrix contains as its (i, j)th

entry a 1 if there is a link from i to j, and 0 otherwise. This has the desired property

that URLs are grouped in turn by top level domain, domain, hostname, and finally

path. The subgraph for pages in stanford.edu appear as a sub-block of the full link

matrix. In turn, the subgraph for pages in www-db.stanford.edu appear as a nested

sub-block.

We can then gain insight into the structure of the Web by using dotplots to

visualize the link matrix. In a dotplot, if there exists a link from page i to page j

then point (i, j) is colored; otherwise, point (i, j) is white. Since our full datasets are

too large to see individual pixels, we show several slices of the Web in Figure 5.6.

Notice three things:

1. There is a definite block structure to the Web.

2. The individual blocks are much smaller than entire Web.

3. There are clear nested blocks corresponding to domains, hosts, and subdirecto-

ries within the path.

Figure 5.6(a) shows the dotplot for the ibm.com domain. Notice that there are

clear blocks, which correspond to different hosts within ibm.com; for example, the
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(a) IBM (b) Stanford/Berkeley

(c) Stanford-50 (d) Stanford/Berkeley Host Graph

Figure 5.6: A view of 4 different slices of the Web: (a) the IBM domain, (b) all
of the hosts in the Stanford and Berkeley domains, (c) the first 50 Stanford hosts,
alphabetically, and (d) the host-graph of the Stanford and Berkeley domains.
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upper left block corresponds to the almaden.ibm.com hosts (the hosts for IBM’s Al-

maden Research Center). Notice that the pages at the very end of the plot (pages

i ≥ 18544) are heavily inlinked (the vertical line at the lower right hand corner of the

plot. These are the pages within the www.ibm.com host, and it is expected that they

be heavily inlinked.

Figure 5.6(b) shows the dotplot for Stanford/Berkeley. Notice that this also

has a strong block structure and a dense diagonal. Furthermore, this plot makes clear

the nested block structure of the Web. The superblock on the upper left hand side

is the stanford.edu domain, and the superblock on the lower right hand side is the

berkeley.edu domain.

Figure 5.6(c) shows a closeup of the first 50 hosts alphabetically within the stan-

ford.edu domain. The majority of this dotplot is composed of 3 hosts that are

large: acomp.stanford.edu, the academic computing site at Stanford, in the upper left

hand corner; cmgm.stanford.edu, an online bioinformatics resource, in the middle, and

daily.stanford.edu, the Web site for the Stanford Daily (Stanford’s student newspaper)

in the lower right hand corner.

Figure 5.6(d) shows the host graph for the stanford.edu and berkeley.edu domains,

in which each host is treated as a single node, and an edge is placed between host i

and host j if there is a link between any page in host i and host j. Again, we see

strong block structure on the domain level, and the dense diagonal shows strong

block structure on the host level as well. The vertical and horizontal lines near

the bottom right hand edge of both the Stanford and Berkeley domains represent

the www.stanford.edu and www.berkeley.edu hosts, showing that these hosts are, as

expected, strongly linked to most other hosts within their own domain.

Block Sizes

We investigate next the sizes of the hosts in the Web. Figure 5.7(a) shows the

distribution over number of (crawled) pages of the hosts in LargeWeb. Notice that

the majority of sites are small, on the order of 100 pages. Figure 5.7(b) shows the

sizes of the host blocks in the Web when dangling nodes are removed. When dangling

nodes are removed, the blocks become smaller, and the distribution is still skewed
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Figure 5.7: Histogram of distribution over host sizes of the Web. The x-axis gives
bucket sizes for the log10 of the size of the host-blocks, and the y-axis gives the fraction
of host-blocks that are that size.

towards small blocks. The largest block had 6,000 pages. In future sections we see

how to exploit the small sizes of the blocks, relative to the dataset as a whole, to

speedup up link analysis.

The GeoCities Effect

Intra-host link density refers to the fraction of outlinks in a host are to other pages

on the same host. While one would expect that most hosts have high intra-host link

density, as in cs.stanford.edu, there are some hosts that one would expect to have low

intra-host link density, for example pages.yahoo.com (formerly www.geocities.com).

The Web site http://pages.yahoo.com is the root page for Yahoo! GeoCities, a free

Web hosting service. There is no reason to think that people who have Web sites on

GeoCities would prefer to link to one another rather than to sites not in GeoCities.4

Figure 5.8 shows two histograms of the intra-host densities of the Web. These his-

tograms shows how many hosts have a given intra-host density. In Figure 5.8(a) there

is a spike near 0% intra-host linkage, showing that there are many hosts that do not

have high intra-host linkage, relative to their inter-host linkage (e.g., the Geocities

4There may of course be deeper structure found in the path component, although we currently
do not directly exploit such structure.
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Figure 5.8: Distribution over intra-host outlink density of host blocks for the DNR-
LargeWeb data set. The x-axis of each figure shows percentile buckets for intra-host
linkage density (the percent of edges originating or terminating in a given host that
are intra-host links), and the y-axis shows the fraction of hosts that have that linkage
density. Figure 5.8(a) shows the distribution of intra-host linkage density for all hosts;
5.8(b) shows it for all hosts that have 5 or more pages.

Effect). However, when we remove the hosts that have only 1 page (Figure 5.8(b)),

this spike is substantially dampened, and when we exclude hosts with fewer than 5

pages, the spike is eliminated. This shows that the hosts in LargeWeb that are not

highly intraconnected are very small in size. When the very small hosts are removed,

the great majority of remaining hosts have high intra-host densities, and very few of

them suffer from the GeoCities effect.

5.4.3 BlockRank Algorithm

We now present the BlockRank algorithm that exploits the empirical findings of the

previous section to speed up the computation of PageRank. This work is motivated

by and builds on aggregation/disaggregation techniques [19, 71] and domain decom-

position techniques [25] in numerical linear algebra. Steps 2 and 3 of the BlockRank

algorithm are similar to the Rayleigh-Ritz refinement technique [54].
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Overview of BlockRank Algorithm

The block structure of the Web suggests a fast algorithm for computing PageRank,

wherein a “local PageRank vector” is computed for the pages on each host indepen-

dently, giving the relative importance of pages within a host. These local PageRank

vectors can then be used to form an approximation to the global PageRank vector

that is used as a starting vector for the standard PageRank computation (e.g., the

starting vector for the Power Method). This is the basic idea behind the BlockRank

algorithm, which we summarize here and describe in this section. The algorithm

proceeds as follows:

0. Split the Web into blocks by domain.

1. Compute the Local PageRanks for each block (Section 5.4.3).

2. Estimate the relative importance, or “BlockRank” of each block (Section 5.4.3).

3. Weight the Local PageRanks in each block by the BlockRank of that block,

and concatenate the weighted Local PageRanks to form an approximate Global

PageRank vector ~z (Section 5.4.3).

4. Use ~z as a starting vector for standard PageRank (Section 5.4.3).

We describe the steps in detail below, and we introduce some notation here. We

will use lower-case indices (i.e. i, j) to represent indices of individual Web sites, and

upper case indices (i.e. I, J) to represent indices of blocks. We use the shorthand

notation i ∈ I to denote that page i is in the set of pages corresponding to block I.

The number of elements in block J is denoted nJ . The graph of a given block J is

given by the nJ × nJ submatrix GJJ of the matrix G.

Computing Local PageRanks

In this section, we describe computing a “local PageRank vector” for each block in

the Web. Since most blocks have very few links in and out of the block as compared

to the number of links within the block, it seems plausible that the relative rankings

of most of the pages within a block are determined by the intra-block links.
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We define the local PageRank vector ~lJ of a block J (GJJ) to be the result of the

PageRank algorithm applied only on block J , as if block J represented the entire

Web, and as if the links to pages in other blocks did not exist. That is:

~lJ = pageRank(GJJ , ~sJ , ~vJ)

where the start vector ~sJ is the nJ×1 uniform probability vector over pages in block J

([ 1
nJ

]n×1), and the personalization vector ~vJ is the nJ × 1 vector whose elements are

all zero except the element corresponding to the root node of block J , whose value is

1.

In Figure 5.9, we show a histogram of the number of iterations it takes for the local

PageRank scores for each host in DNR-LargeWeb to converge to an L1 residual

< 10−1. Notice that most hosts converge to this residual in less than 12 iterations.

Interestingly, there is no correlation between the convergence rate of a host and the

host’s size. Rather, the convergence rate is primarily dependent on the extent of the

nested block structure within the host. That is, hosts with strong nested blocks are

likely to converge slowly. Hosts with a more random connection pattern converge

faster.

This observation suggests that one could make the local PageRank computations

even faster by wisely choosing the blocks. That is, if a host has a strong nested block

structure, use the directories within that host as your blocks. However, we did not

pursue the idea, since the cost of the local PageRank computations is not a bottleneck

for computing PageRank with our scheme, as we will discuss in Section 5.4.6.

Estimating the Relative Importance of Each Block

In this section, we describe computing the relative importance, or BlockRank, of each

block. Assume there are k blocks in the Web. To compute BlockRanks, we first create

the block graph B, where each vertex in the graph corresponds to a block in the Web

graph. An edge between two pages in the Web is represented as an edge between the

corresponding blocks (or a self-edge, if both pages are in the same block). The edge

weights are determined as follows: the weight of an edge between blocks I and J is
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Figure 5.9: Local PageRank convergence rates for hosts in DNR-LargeWeb. The
x-axis is the number of iterations until convergence to a tolerance of 10−1, and the
y-axis is the fraction of hosts that converge in a given number of iterations.

defined to be the sum of the edge-weights from pages in I to pages in J in the Web

graph, weighted by the local PageRanks of the linking pages in block I.

That is, if A is the Web graph and li is the local PageRank of page i in block I,

then weight of edge BIJ is given by:

BIJ =
∑

i∈I,j∈J

Aij · li

We can write the above equation in matrix notation as follows. Define the local

PageRank matrix L to be the n × k matrix whose columns are the local PageRank

vectors ~lJ .

L =















~l1 ~0 · · · ~0

~0 ~l2 · · · ~0
...

...
. . .

...

~0 ~0 · · · ~lK















Define the matrix S to be the n × k matrix that has the same structure as L, but

whose nonzero entries are all replaced by 1. Then the block matrix B is the k × k
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matrix:

B = LT AS

Notice that B is a transition matrix where the element BIJ represents the transition

probability of block I to block J . That is:

BIJ = p(J |I)

Once we have the k × k transition matrix B, we may use the standard PageRank

algorithm on this reduced matrix to compute the BlockRank vector ~b. That is:

~b = pageRank(B,~vk, ~vk)

where ~vk is the uniform k-vector [ 1
k
]k×1. This PageRank computation will yield the

stationary distribution of the transition matrix c · B + (1 − c)Ek, where we define

Ek = [1]k×1 × ~vk
T . In terms of the random surfer model, we imagine a random surfer

going from block to block according to the transition probability matrix B. At each

stage, the surfer will get bored with probability 1 − c and jump to a different block.

Approximating Global PageRank using Local PageRank and BlockRank

In this section, we find an estimate to the global PageRank vector ~x. At this point,

we have two sets of rankings. Within each block J , we have the local PageRanks ~lJ of

the pages in the block. We also have the BlockRank vector ~b whose elements bJ are

the BlockRank for each block J , measuring the relative importance of the blocks. We

approximate the global PageRank of a page j ∈ J as its local PageRank lj , weighted

by the BlockRank bJ of the block in which it resides. That is,

x
(0)
j = lj · bJ

In matrix notation, this is:

~x(0) = L~b

Recall that the local PageRanks of each block sum to 1. Also, the BlockRanks
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sum to 1. Therefore, our approximate global PageRanks will also sum to 1. We

use our approximate global PageRank vector ~x(0) as a start vector for the standard

PageRank algorithm.

Using This Estimate as a Start Vector

In order to compute the true global PageRank vector ~x from our approximate Page-

Rank vector ~x(0), we simply use it as a start vector for standard PageRank. That

is:

~x = pageRank(G,~x(0), ~v)

where G is the graph of the Web, and ~v is the uniform distribution over root nodes.

In Section 5.4.4, we show how to compute different personalizations quickly once

~x has been computed.

The BlockRank algorithm for computing PageRank, presented in the preceding

sections, is summarized by Algorithm 8.

5.4.4 Personalized BlockRank

In this section, we describe how we can use the BlockRank algorithm and a restric-

tion on the jump behavior of the random surfer to further reduce the computation

time when computing a large number of personalized or topic-sensitive PageRank

vectors. Although the standard BlockRank algorithm can be used to speed up the

computation of each of the personalized PageRank vectors in isolation, we can exploit

the redundant computations across different personalizations to speed up the process

further.

As we described earlier in Section 3.1.1, personalizing the PageRank computation

normally involves choosing a distribution ~v over pages that specifies where the ran-

dom surfer jumps to when he decides to teleport rather than following an outlink. We

can make the personalized computations more efficient if we instead specify a per-

sonalization vector over hosts that the random surfer jumps to. For example, when

teleporting, a random surfer interested in sports may jump to the www.espn.com host,

but he may not jump to http://www.espn.com/ncb/columns/forde pat/index.html. We
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0. Sort the Web graph lexicographically as described in Section 5.4.2, exposing
the nested block structure of the Web.
1. Compute the local PageRank vector ~lJ for each block J .

foreach block J do
~lJ = pageRank(GJJ , ~sJ , ~vJ);

end

2. Compute block transition matrix B and BlockRanks ~b.

B = LT AS
~b = pageRank(B,~vk, ~vk)

3. Find an approximation ~x(0) to the global PageRank vector ~x by weighting
the local PageRanks of pages in block J by the BlockRank of J .

~x(0) = L~b

4. Use this approximation as a start vector for a standard PageRank iteration.

~x(0) = pageRank(G,~x(0), ~v)

Algorithm 8: BlockRank Algorithm
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can then encode the personalization vector in the k-dimensional vector ~vk (where k

is the number of blocks (hosts) in the Web) that is a distribution over different hosts.

As we alluded to earlier in Section 3.5, we can then compute a basis set of PageRank

vectors that were generated using this block-level personalization scheme.

With this restriction on the random jump the surfer is allowed to make, the local

PageRank vectors ~lJ will not change for different personalizations. In fact, since

the local PageRank vectors ~lJ do not change for different personalizations, neither

does the block matrix B. Only the BlockRank vector ~b will change for different

personalizations. Therefore, we only need to recompute the BlockRank vector ~b for

each block-personalization vector ~vk. Assuming you have already computed a generic

PageRank vector once using the BlockRank algorithm, and have stored the block-

transition matrix B, the personalized BlockRank algorithm is simply the last 3 steps

of the generic BlockRank algorithm.

Inducing Random Jump Probabilities Over Pages

The Personalized BlockRank algorithm requires that the random surfer not have the

option of jumping to a specific page when he teleports (he may only jump to the

host). However, the last step in the BlockRank algorithm, in which we run the

normal Power Method iterations over the page-level Web graph, requires a random

jump probability distribution ~v over pages. Thus, we need to induce the probability

p(j) that the random surfer will jump to a page j if we know the probability p(J)

that he will jump to host J in which page j resides. We induce this probability as

follows:

p(j) = p(J)p(j|J) (5.1)

That is, the probability that the random surfer jumps to page j is the probability

that he will jump to host J , times the probability of being at page j given that he is

in host J .

Since the local PageRank vector ~lJ is the stationary probability distribution of

pages within host J , p(j|J) is given by the element of ~lJ corresponding to page j.

Therefore, the elements LjJ of the matrix L correspond to LjJ = p(j|J). Also, by
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definition, the elements (vk)J = p(J). Therefore, in matrix notation, Equation 5.1

can be written as ~v = L~vk.

Using “Better” Local PageRanks

If we have already computed the generic PageRank vector ~x, we have even “better”

local PageRank vectors than we began with. That is, we can normalize segments of

~x to form the normalized global PageRank segments ~gJ as described in Section 5.4.3.

These scores are of course better estimates of the relative magnitudes of pages within

the block than the local PageRank vectors ~lJ , since they are derived from the generic

PageRank vector for the full Web. So we can modify Personalized BlockRank as

follows. Let us define the matrix H in a manner similar to the way we defined

L, except using the normalized global PageRank segments ~gJ rather than the local

PageRank vectors ~lJ .

Again, we only need to compute H once. We define the matrix BH to be similar

to the matrix B as defined in Equation 5.4.3, but using H instead of L:

BH = HTAS (5.2)

Using BH (constructed from segments of the global PageRank vector) in place of B

(constructed from the local PageRank vectors), we can proceed with Steps 2-4 of

Algorithm 8.

5.4.5 Advantages of BlockRank

The BlockRank algorithm has four major advantages over the standard PageRank

algorithm.

Advantage 1 A major speedup of our algorithm comes from caching effects. All of

the host-blocks in our crawl are small enough so that each block graph fits in

main memory, and the vector of ranks for the active block largely fits in the

CPU cache. As the full graph does not fit entirely in main memory, the local

PageRank iterations thus require less disk i/o then the global computations.
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The full rank vectors do fit in main memory; however, using the sorted link

structure5 dramatically improves the memory access patterns to the rank vector.

Indeed, if we use the sorted link structure, designed for BlockRank, as the input

instead to the standard PageRank algorithm, the enhanced locality of reference

to the rank vectors cuts the time needed for each iteration of the standard

algorithm by over 1/2: from 6.5 minutes to 3.1 minutes for each iteration on

DNR-LargeWeb!

Advantage 2 In the BlockRank algorithm, the local PageRank vectors for many

blocks will converge quickly; the computations of those blocks may be termi-

nated after only a few iterations. Thus, we can expend more computation

on slowly converging blocks and less computation on faster converging blocks.

Note for instance in Figure 5.9 that there is a wide range of rates of conver-

gence for the blocks. In the standard PageRank algorithm, iterations operate

on the whole graph; thus the convergence bottleneck is largely due to the slow-

est blocks. Much computation is wasted recomputing the PageRank of blocks

whose local computation has already converged.

Advantage 3 The local PageRank computations in Step 1 of the BlockRank algo-

rithm can be computed in a completely parallel or distributed fashion. That is,

the local PageRanks for each block can be computed on a separate processor,

or computer. The only communication required is that, at the end of Step 1,

each computer should send their local PageRank vector ~lj to a central computer

that will compute the global PageRank vector. If our graph consists of n total

pages, the net communication cost consists of 8n bytes (if using 8-byte double

precision floating point values). Naive parallelization of the computation that

does not exploit block structure would require a transfer of 8n bytes after each

iteration, a significant penalty. Furthermore, the local PageRank computations

can be pipelined with the Web crawl. That is, the local PageRank computa-

tion for a host can begin as a separate process as soon as the crawler finishes

crawling the host. In this case, only the costs of Steps 2–4 of the BlockRank

algorithm become rate-limiting.

5As in Section 5.4.2, this entails assigning document ids in lexicographic order of the url (with
the components of the full hostname reversed).
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Advantage 4 In several scenarios, the local PageRank computations (e.g., the re-

sults of Step 1) can be reused during future applications of the BlockRank

algorithm. Consider for instance news sites such as cnn.com that are crawled

more frequently then the general Web. In this case, after a crawl of cnn.com, if

we wish to recompute the global PageRank vector, we can rerun the BlockRank

algorithm, except that in Step 1 of our algorithm, only the local PageRanks for

the cnn.com block need to be recomputed. The remaining local PageRanks will

be unchanged, and can be reused in Steps 2–3. Recall from Section 5.4.4 that

in the case of Personalized BlockRank, if we have a global PageRank vector

available, we can avoid the local PageRank computations altogether.

5.4.6 Experimental Results

In this section, we investigate the speedup of BlockRank compared to the standard al-

gorithm for computing PageRank. The speedup of our algorithm for typical scenarios

comes from the first three advantages listed in Section 5.4.5. The speedups are due to

less expensive iterations, as well as fewer total iterations. In the case of personalized

computations, Advantage 4 helps us reduce redundancy across the computation of

different personalized PageRank vectors.

We begin with the scenario in which PageRank is computed after the completion

of the crawl; we assume that only Step 0 of the BlockRank algorithm is computed

concurrently with the crawl. As mentioned in Advantage 1 from the previous section,

simply the improved reference locality due to block structure, exposed by lexicograph-

ically sorting the link matrix, achieves a speedup of a factor of 2 in the time needed

for each iteration of the standard PageRank algorithm. This speedup is completely

independent of the value chosen for c, and does not affect the rate of convergence as

measured in number of iterations required to reach a particular L1 residual.

If instead of the standard PageRank algorithm (i.e., Power Method), we use the

BlockRank algorithm on the block structured matrix, we gain the full benefit of Ad-

vantages 1 and 2; the blocks each fit in main memory, and many blocks converge

more quickly than the convergence of the entire Web. We compare the wallclock
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Step Wallclock time
1 17m 11s
2 7m 40s
3 0m 4s
4 56m 24s

Total 81m 19s

Table 5.5: Running times for the individual steps of BlockRank for c = 0.85 in
achieving a final residual of < 10−3.

Algorithm Wallclock time
Standard 180m 36s
Standard (using URL-sorted links) 87m 44s
BlockRank (no pipelining) 81m 19s
BlockRank (w/ pipelining) 57m 06s

Table 5.6: Wallclock running times for 4 algorithms for computing PageRank with
c = 0.85 to a residual of less than 10−3.

time it takes to compute PageRank using the BlockRank algorithm in this scenario,

where local PageRank vectors are computed serially after the crawl is complete, with

the wallclock time it takes to compute PageRank using the standard algorithm given

in [61]. Table 5.5 gives the running times of the 4 steps of the BlockRank algorithm

on the LargeWeb dataset. The first 3 rows of Table 5.6 give the wallclock running

times for standard PageRank, standard PageRank using the URL-sorted link matrix,

and the full BlockRank algorithm computed after the crawl. We see there is a small

additional speedup for BlockRank on top of the previously described speedup. Sub-

sequently, we will describe a scenario in which the costs of Steps 1–3 become largely

irrelevant, leading to further effective speedups.

In this next scenario, we assume that the cost of Step 1 can be made negligible

in one of two ways: the local PageRank vectors can be pipelined with the Web

crawl, or they can be computed in parallel after the crawl. If the local PageRank

vectors are computed as soon as possible (e.g., as soon as a host has been fully

crawled), the majority of local PageRank vectors will have been computed by the

time the crawl is finished. Similarly, if the local PageRank vectors are computed

after the crawl, but in a distributed manner, using multiple processors (or machines)
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PageRank BlockRank
Stanford/Berkeley 50 27
LargeWeb 28 18

Table 5.7: Number of iterations needed to converge for standard PageRank and
for BlockRank (to a tolerance of 10−4 for Stanford/Berkeley, and 10−3 for
LargeWeb).

to compute the PageRank vectors independently, the time it takes to compute the

local PageRanks will be low compared to the standard PageRank computation. Thus,

only the running time of Steps 2–4 of BlockRank will be relevant in computing net

speedup. The contruction of B is the dominant cost of Step 2, but this too can be

pipelined; Step 3 has negligible cost. Thus the speedup of BlockRank in this scenario

is determined by the increased rate of convergence in Step 4 that comes from using

the BlockRank approximation ~x(0) as the start vector. We now take a closer look

at the relative rates of convergence. In Figure 5.10(a), we show the convergence

rate of standard PageRank, compared to the convergence of Step 4 of BlockRank on

the Stanford/Berkeley dataset for a random jump probability 1− c = 0.15 (i.e.,

c = 0.85). Note that to achieve convergence to a residual of 10−4, using the BlockRank

start vector leads to a speedup of a factor of 2 on the Stanford/Berkeley dataset.

The LargeWeb dataset yielded an increase in convergence rate of 1.55. These results

are summarized in Table 5.7. Combined with the first effect described above (from

the sorted link structure), in this scenario, our algorithm yields a net speedup of over

3.

We next give results for the personalized BlockRank algorithm, in which we as-

sume the generic PageRank vector has already been computed, so that there is no

need to compute local PageRanks. We consider a random surfer who is a graduate

student in linguistics at Stanford. When he teleports (with probability 0.85), he has

a .8 probability of jumping to the linguistics host www-linguistics.stanford.edu, and a

.2 probability of jumping to the main Stanford host www.stanford.edu. Figure 5.11

shows that the speedup of computing the Personalized PageRank for this surfer shows

comparable speedup benefits to standard BlockRank. Note that the local PageRank

vectors do not need to be computed at all for Personalized BlockRank, since the
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Figure 5.10: Convergence rates for standard PageRank (solid line) vs. BlockRank
(dotted line). The x-axis is the number of iterations, and the y-axis is the log of the
L1-residual. Stanford/Berkeley data set; c = 0.85.
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Figure 5.11: Convergence of Personalized PageRank computations using standard
PageRank and Personalized BlockRank.
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matrix H is formed from the already computed generic PageRank vector. Therefore,

the running time characteristics of personalized BlockRank on the full Web are given

by the “BlockRank w/ pipelining” results given earlier.



Chapter 6

Efficient Encodings for Ranking

Vectors

6.1 Introduction1

In order for our system to utilize efficiently, at query-time, the topic-sensitive Page-

Rank vectors that we computed offline, we need to compress them so that they can be

stored in main memory. A detailed look at our query-processing subsystem shows why

maintaining them in memory is important. As depicted in Figure 6.1, our keyword-

search query-processing subsystem utilizes an inverted text index I and an auxiliary

index R consisting of a set of topic-sensitive PageRank ranking vectors. For the

moment, consider a simplified system with only one such vector containing the stan-

dard PageRank attribute. The index I contains information about the occurrences

of terms in documents and is used to retrieve the set of document IDs for documents

satisfying some query Q. The index R is then consulted to retrieve the PageRank

score for each of these candidate documents. Using the information retrieved from I
and R, a composite document score is generated for each candidate result, yielding

a final ranked listing.

The inverted index I is constructed offline and provides the mapping {t → fdt},
where fdt describes the occurrence of term t in document d. In the simplest case, fdt

1This chapter covers work we first presented in [34, 36]

119
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Figure 6.1: A simplified illustration of a search engine with a standard inverted text-
index and 3 auxiliary numerical attributes for each document. Note that the number
of random accesses to I is typically small, whereas the number of accesses to R is
large. Our goal is to minimize the space needed for the data structure R.

could be the within-document frequency of t. The number of random accesses to I
needed to retrieve the necessary information for answering a query Q exactly equals

the number of terms in the query, |Q|. Because queries are typically small, consisting

of only a few words, it is practical to keep the index I on-disk and perform |Q| seeks

for answering each query.

The auxiliary index R is also constructed offline, and provides the mapping

{d → rd}, where rd is the popularity (e.g., PageRank) of document d. Note that

in contrast to I, the index R provides per-document information. The search system

typically must access R once for each candidate document of the result set, which

could potentially be very large. These random accesses would be prohibitively ex-

pensive, unless R can be kept entirely in main memory. Whereas the query length is

the upper bound for the accesses to I, the number of candidate results retrieved from

I is the upper bound for accesses to R. One way to reduce the number of random

accesses required is to store the attribute values of R in I instead; e.g., create an
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index I ′ that provides the mapping {t → {fdt, rd}}. However, doing so would require

replicating the value rd once for each distinct term that appears in d, generally an

unacceptable overhead, especially if more than one numeric property is used.

Much work has been done on compressing I, although comparatively less atten-

tion has been paid to effective ways of compressing auxiliary numeric ranking vectors

such as R. The typical keyword-search system has only a few such auxiliary rank-

ing vectors, such as the document lengths needed in computing the query-document

cosine similarity [74] — and can be kept in main memory without much difficulty.

However, our topic-sensitive PageRank based system requires consulting a set of aux-

iliary ranking vectors, so that much more consideration needs to be given to the

encodings used for the attribute values.

Note that falling main-memory prices do not eliminate the need for efficient en-

codings; increasingly affordable disk storage is leading to rapidly growing Web-crawl

repositories, in turn leading to larger sets of documents that need to be indexed.

Furthermore, to support large numbers of simultaneous queries, search engines must

maintain tens or hundreds of replicas of search indexes on independent machines, exac-

erbating the need for efficiently encoded indexes. Utilizing a rich set of per-document

numeric ranking attributes for growing crawl repositories and growing numbers of

users thus continues to require efficient encoding schemes.

In Section 6.2, we briefly review scalar quantization, which provides the frame-

work for our approach, and introduce new distortion criteria for measuring quantizer

performance. In Section 6.3, we discuss fixed-length encoding schemes and analyze

their performance using a traditional numerical distortion measure. In Section 6.4,

we investigate in detail distortion measures more appropriate for the case of search

ranking functions, and analyze the performance of various quantization strategies

both analytically and empirically. In Section 6.5, we extend our approach to consider

variable-length encoding schemes and discuss their performance. We review related

work in Section 6.6 and conclude in Section 6.7.
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6.2 Scalar Quantization

6.2.1 Quantization Rules

An excellent introduction to quantization can be found in [28]; we give only a brief

review here. Let C ⊂ R; for our work, assume C is finite. A quantizer is a function

q(x) : R → C that partitions R into a set S of intervals and maps values in the same

interval to some common reproduction value in C. In other words, q(x) maps real

values to some approximation of the value. Let n = |C|. As the values in C can be

indexed from 0 to n − 1, one way to compactly represent values in the range of q(x)

is with fixed-length codes of length l = dlog2ne bits, in conjunction with a codebook

mapping the fixed-length codes to the corresponding reproduction value. Let x̂ =

q(x). Given the sequence {ai} of real numbers as input, a compression algorithm based

on fixed-length scalar quantization would output the sequence of l-bit codewords

âi, along with the codebook mapping each distinct codeword to its corresponding

reproduction value. The error that results from quantizing a particular input value

x to the reproduction value x̂ is typically quantified by a distortion measure. We

consider distortion measures in Section 6.2.2.

The simplest fixed-length encoding simply partitions the domain of possible values

into n cells of uniform width using a uniform quantizer un, where n is typically chosen

to be a power of 2. A more complex quantizer could use a nonuniform partition to

lower the distortion. Alternatively, instead of using nonuniform partitions, the input

values can be transformed with a nonlinear function G(x), called a compressor, then

uniformly quantized using un. The inverse function G−1(x) can be used for recon-

structing an approximation to the original value. Such a quantizer G−1(un(G(x))) is

called a compander 2; it is known that any fixed-length, nonuniform quantizer can be

implemented by an equivalent compander [28]. For simplicity, unless otherwise noted,

we will define quantization strategies as companders.

Quantizers can also make use of variable-length codes for the elements in set C. If

shorter codewords are assigned to the elements in C that more frequently correspond

2Short for compressor, expander. Note that companders save on the need for explicit codebooks,
as the partitioning of the domain is uniform. G−1(x) takes the place of the codebook.
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to values in the input data being compressed, the average codeword length can be

reduced. The simplest scheme would use a Huffman code for C, using the known or

estimated frequency of the elements in C to generate the optimal Huffman codes.

As a sidenote, we mention that one possible way to encode the ranks for docu-

ments is to sort the documents by rank, and then assign each document a codeword

corresponding to the ordinal rank of that document. Since there are hundreds of mil-

lions of documents, each codeword still requires at least 28 bits, so that this scheme

does not solve the basic problem of how best to efficiently encode ranking attributes

(for more than one such attribute).3

6.2.2 Measuring Distortion

The scalar quantization literature in general considers the loss in numerical precision

when comparing the expected distortion of quantization schemes. For instance, the

most commonly used measure of distortion for a value is the squared error:

d(x, q(x)) = (x − q(x))2 (6.1)

The inaccuracy of a particular quantization function q for a particular set of input

data is then the mean distortion, denoted D(q). If d(x, q(x)) is the squared error as

defined above, then D(q) is referred to as the mean squared error, or MSE.

However, in the case of document ranking, the numerical error of the quantized

attribute values themselves are not as important as the effect of quantization on the

rank order induced by these attributes over the results to a search query. In our work,

we show that distortion measures based on induced rankings of search-query results

lead to different choices for optimality.

Assume each document in the corpus has k associated numerical ranking at-

tributes. Note that some of these attributes, such as PageRank, are precomputed

and stored, and some are query-specific and hence generated at query-time. As the

goal of quantization is to reduce space requirements of the precomputed indexes, it is

3This scheme can make certain quantization rules easier to implement, but does not eliminate
the need to construct efficient quantizers.
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used only on the precomputed attributes. The attributes can be used in one of two

ways to rank a set of documents that are candidate results to some search query.4

The scenarios we consider are:

1. Each of the k attributes can be used separately to rank the candidate result

documents to generate k intermediate rank orders, which are then aggregated

to generate a final rank order over the candidates [23].

2. The values for the k attributes for the documents can be combined numerically

to form a composite score, which is then used to rank the set of candidate

documents.

Under Scenario 1, quantization has a very simple effect on the intermediate rank

orders. Quantization can map similar values to the same cell, but can never swap

the relative order of two values; for any two values x and y, and any quantizer q,

we know that x < y ⇒ q(x) ≤ q(y). Thus, an intermediate rank order using a

quantized version of an attribute differs from the intermediate rank order using the

original attribute only through the introduction of false ties.5 This property suggests

the following distortion measure. Let the distortion of a quantizer on a particular

attribute, for a particular candidate result set of size m, be measured as the sum of

squares of the number of candidate documents mapped to the same cell, normalized

so that the maximum distortion is 1. Assuming the original values for the attribute

were distinct, this distortion is closely related to the fraction of document pairs in

the result set that are falsely tied. More formally, let S be the query-result set, with

m = |S|, and let Xi be the number of documents in S mapped to cell i for the

attribute under consideration. The distortion of an n-cell quantizer on the set S is

given by:

Distortion(qj ,S) =
1

m2

n−1
∑

0

X2
i (6.2)

4E.g., the candidate result set might consist of documents that contain all of the query terms.
5The final rankings, after rank aggregation, may of course differ in more complex ways, depending

on how the aggregation is done. If in such a case, measuring the distortion of final rankings is desired,
the distortion measure of Scenario 2 is more appropriate.
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We refer to this distortion measure as TDist. We can evaluate the relative perfor-

mance of different quantizers based on the expectation (or average over some test

query set) of the above distortion. Different models for computing this expectation

are given in Section 6.4. The empirical performance of different quantizers over a test

set of queries on this distortion measure are presented in Section 6.4.5.

Under Scenario 2, we cannot use the above distortion measure. The error can

no longer be measured solely through artificial ties. In the final rankings induced

by the composite score, the relative ordering of documents can be different. To

measure the distortion in this case, we rely on the KDist measure we defined earlier

in Appendix 4.A. Consider two partially ordered lists of URLs, τ and τq, each of length

m, corresponding to rankings induced by exact and approximate composite scores,

resp. As our distortion measure, we use KDist(τ, τq); recall that this value is the

probability that τ and τq disagree on the relative ordering of a randomly selected pair

of distinct nodes (u, v). We present the empirical performance of different quantizers

on the above distortion measure in Section 6.4.5.

6.3 Fixed-Length Encoding Schemes

In this section, we discuss fixed-length encoding schemes, describe the optimal en-

coding under the MSE distortion measure, and give the empirical MSE-performance

of various fixed-length encoding schemes. The “best” fixed-length quantizer q can be

chosen by answering the following three questions:

1. What is the appropriate measure of distortion D(q) for the application?

2. How many cells should the partition have? In other words, what is the appro-

priate choice for n, noting that (a) the codeword length is given by dlog2ne, and

(b) smaller n will lead to higher distortion.

3. For a particular n, what compressor function G(x) should be used to minimize

distortion?

Answering Question 2 is simply a matter of choosing a codeword length that will allow

the encoded ranking vector to fit in the available memory. If we answer Question 1 by



CHAPTER 6. EFFICIENT ENCODINGS FOR RANKING VECTORS 126

choosing the MSE, then results from the quantization literature [28, 63], let us choose

the optimal compressor function based on the distribution of the input values, leading

to the answer for Question 3. We begin with this case (i.e., where D(q) is the MSE),

and then discuss the use of more appropriate distortion measures in Section 6.4.

The optimal compressor function G(x) (i.e., the G(x) which will minimize the

quantization MSE) is determined by the probability density function (pdf) of the

input data, p(y). In particular, the optimal compressor is given by the following [63]:

G(x) = c ·
∫ x

−∞
p(y)1/3dy (6.3)

Fortunately, the entire ranking vector that we would like to encode is available, so

we can determine p(y) easily. In Section 6.3.1, we look at the distribution of val-

ues of PageRank vectors in our dataset, and in Section 6.3.2, we discuss the MSE

performance of 6 fixed-length coding schemes.

6.3.1 Data Distribution

To compute the right hand side of Equation 6.3, we examine the relative frequency

distribution p(y) of the values of the PageRank ranking vectors that we want to

encode.

We used as our dataset the Stanford WebBase crawl repository of 120 million

pages, containing a total of 360 million distinct URLs. This latter count includes

pages that were linked to from crawled pages, but were not themselves crawled. Note

that using a standard 4-byte floating point representation, the PageRank vector for

these 360 million pages requires 1.34GB of space. Figure 6.2 shows the distribution

of the standard PageRank values for this dataset on a log-log plot. In plotting the

distribution, we used logarithmic binning, with the counts normalized by the bin

width. In other words, when computing the relative counts shown on the y-axis, we

used bins of equal width on a logarithmic scale, and divided the counts by the actual

width of the bin. This technique was needed, as the data is very sparse for high rank
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Figure 6.2: PageRank distribution on a log-log scale. The crawl graph included 360M
URLs generated from a 120M page repository. The best-fit power-law curve is shown,
with a slope close to -2.1, in agreement with prior findings.

values.6 The distribution appears to follow a power-law with exponent close to 2.17,

similar to the findings of Pandurangan et al. [62] on a different dataset. They also

provide a graph-generation model that explains this observed property of the Web.

The Topic-Sensitive PageRank vectors we constructed following the methodology

proposed in Chapter 3 behave similarly. For instance, the values for the PageRank

vector generated with respect to the Computers topic follow the distribution shown

in Figure 6.3; the other topic-specific PageRank scores we measured also follow a

similar distribution, but are not shown here. Note that the power-law fit is not

quite as close, with the slope steepening noticeably in the tail. The best-fit power-

law exponents for the topic-specific PageRank distributions all ranged between 1.7

and 1.8. Because developing efficient encodings for the topic-specific rank vectors is

analogous to developing encodings for the standard PageRank vector, the remaining

discussion focuses solely on encodings for the standard PageRank vector.

When computing the optimal compressor function for the standard PageRank

6A similar approach is used in [64].
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Figure 6.3: Computers-biased PageRank distribution on a log-log scale. The slope
is close to -1.8, less steep than the ordinary PageRank distribution.

vector, for minimizing the MSE, we compute Equation 6.3 with the pdf p(y) = k ·
y−2.17, y > ymin.

6.3.2 MSE Performance of Fixed-Length Schemes

In this section, we compare the performance of various fixed-length encoding schemes

using the mean-squared-error (MSE) measure. Except for the equal depth strategy,

the quantizers are implemented as companders. A summary of the strategies we

consider is given in Table 6.1. To illustrate the behavior of the quantization strategies

on the PageRank values for the 360 million URLs, Figure 6.47 shows the relative

number of input points mapped to each cell (i.e., the depth of each cell) for 6 different

strategies when using 256 cells. The y-axis is a log scale, to facilitate comparison.

The figure depicts how the various compressor functions transform the input data,

whose distribution was earlier shown in Figure 6.2. Because of PageRank’s power-law

distribution, we see that for the linear (i.e., uniform-width) strategy most cells are

7For clarity, in all of the graphs that follow, the order of the entries in the graph legend reflects
the relative position of the corresponding curves in the graph.
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Table 6.1: A description of 6 quantization strategies we compare.
Strategy Description

linear A uniform quantizer (partition uses
cells of equal width)

sqrt Compander with G(x) ∝ √
x

log Compander with G(x) ∝ log x

mse optimal Compander with G(x) ∝ x−2.17

approx eq depth Compander that approximates equal
depth partitions, as described in Sec-
tion 6.4.3

eq depth Quantizer where partition assigns an
equal number of points to each cell

empty. The other 4 strategies use nonuniform partitions to divide up the range of

possible PageRank values.

To compare the quantization strategies in the traditional (numeric) way, we com-

puted the MSE for each strategy for encoding the standard PageRank vector. We

varied the number of cells used from 24 to 224; i.e., the number of bits necessary for a

fixed-length code varied from 4 to 24 bits per value. Figure 6.5 graphs the MSE vs.

code-length for each of the strategies. We see that mse optimal performs the best,

as expected, with log and sqrt not far behind. We will see in the following section,

however, that if we use a distortion measure based on the induced rankings of query

results, rather than the MSE, the choice of optimal strategy differs.

6.4 Optimizing for Rank-Based Distortion

Measures

We now discuss how we to choose the optimal quantization rule in the context of search

ranking, under various distortion measures and probabilistic models for the keyword-

search task. In general, unless both the search model and distortion measure are

fairly simple, analytically deriving the optimal quantization rule becomes complex.

We derive optimal quantization rules for simple cases, and rely solely on experimental

data for more complex cases.
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Figure 6.4: Relative cell counts for the various strategies for 8-bit codes (i.e., 256
cells). The y-axis gives the fraction of the values in the input mapped to each cell.

In Section 6.4.1, we introduce a simplified model of the keyword search process. We

analytically derive the optimal quantization strategy for this model in Section 6.4.2,

and then extend the derivation to richer models of search. Section 6.4.3 describes a

technique to approximate the optimal strategy using a simple compander. In Sec-

tion 6.4.4, we present empirical results describing the distribution of our data that

provides justification for our simplified models. Section 6.4.5 presents experimen-

tal results illustrating the performance of the quantization strategies under various

ranking models and corresponding distortion measures.

6.4.1 Retrieval and Ranking Model

We begin with a greatly simplified model of keyword search to allow for the analysis

of the effects of quantization on query-result rankings, and later discuss extensions.

The first part of the model describes the retrieval of the candidate documents for

a query. Let D be the set of documents in the Web-crawl repository. Retrieve(D,Q)

is defined as the operation that returns the set S ⊂ D consisting of documents that
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Figure 6.5: The MSE of 6 different strategies, for codeword lengths varying from 4 to
24. The MSE axis is on a log scale, and is normalized so that the MSE of the 4-bit
linear compander is 1.

satisfy the query Q.8 For simplicity, we model the operation Retrieve(D,Q) as

generating a random sample of size M from D, with each element of D having an

equal probability of appearing in the result set.

The second part of the model describes the ranking of the documents. Consider a

single auxiliary ranking vector that is used to rank the documents in S; e.g., assume

that the candidate results will be ranked solely by their PageRank, ignoring any

additional information available. Also assume that all full-precision PageRank values

for the candidate documents are distinct.9 The full-precision PageRank values ~x

induce a total ordering over the set S. If for each document d we use the quantized

PageRank value, q(rd), then a weak ordering is induced instead. In other words,

the relative order of the documents in S are preserved except for false ties between

documents with PageRank values mapped to the same quantizer cell.

The third part of the model is the distortion measure used to judge the rank-order

inaccuracy caused by quantization. In the simplified scenario being developed, this

measure consists of penalizing the false ties, as described in Scenario 1 of Section 6.2.2.

8E.g., S could be the set of documents that contain all of the query terms in Q.
9This assumption fails to hold only for values close to the minimum.
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6.4.2 Derivation of Optimal Quantizers

For the simple model just discussed, we now derive the optimal quantizer. In particu-

lar, consider the case where Retrieve(Q,D) samples M documents from a repository

D uniformly at random, without replacement. Let Xi be the number of query results

mapped to cell i.

The number of documents returned by Retrieve(Q,D) will be different for differ-

ent queries; i.e., M is a random variable. For now, consider the case where M = m for

some constant m. As described in Section 6.2.2, we let the distortion of a particular

result of length m be measured by the sum of squares of the number of points in

the same cell, normalized so that the maximum distortion is 1; in other words, we

measure the distortion of the results S, where |S| = m, using a quantizer with n cells

as:

Distortionm(qj) =
1

m2

n−1
∑

0

X2
i (6.4)

We can treat D, the documents in the corpus, as a multi-type population, with n

types. The type of each document is simply the cell it is mapped to by the quantizer

qj. Let Ni represent the number of points in the input data set10 that the quantizer

maps to cell i (i.e., the count of each type), and let N be the total number of input val-

ues (i.e., N =
∑

Ni). Because the operation Retrieve(D,Q) samples from the pop-

ulation D uniformly at random, without replacement, < X0, . . . , Xn−1 > follows the

multivariate hypergeometric distribution, with parameters m and < N0, . . . , Nn−1 >.

We assume that |D| � |S|, so that the multinomial distribution (i.e., the distribu-

tion that would arise if Retrieve sampled with replacement), with parameters m and

< N0

N
, . . . , Nm−1

N
>, is a reasonable approximation.11 The task of finding the optimal

n-cell quantizer is reduced to choosing cell depths which minimize the expectation

of Equation 6.4. Note that linearity of expectation allows us to consider each Xi

10Namely, the PageRank vector we are compressing.
11The approximation has no impact on the final solution; see Appendix 6.A for the full derivation

using the multivariate hypergeometric distribution
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separately, even though they are not independent:

E[Distortionm] =
1

m2
E[
∑

X2
i ] (6.5)

=
1

m2

∑

E[X2
i ] (6.6)

Since each Xi follows a binomial distribution, E[X2
i ] is easy to find. Letting pi = Ni

N
,

and using the known mean and variance of binomial random variables [29], we see

that

E[Xi] = mpi (6.7)

var[Xi] ≡ E[X2
i ] − E[Xi]

2 (6.8)

var[Xi] = mpi(1 − pi) (6.9)

E[X2
i ] = mpi(1 − pi) + (mpi)

2 = mpi + m(m − 1)p2
i (6.10)

So we need to find the pi that minimizes

E[Distortionm] =
1

m2

∑

E[X2
i ] (6.11)

=
1

m2

∑

i

(

mpi + m(m − 1)p2
i

)

(6.12)

=
1

m
+

m − 1

m

∑

i

p2
i (6.13)

The above is equivalent to minimizing
∑

i p
2
i subject to the constraint

∑

i pi = 1.

Lagrange multipliers can be used to show that the optimal solution is given by

p∗i =
1

n
(6.14)

N∗
i = Np∗i =

N

n
(6.15)

In other words, an equal-depth partition scheme that places equal numbers of points

in each cell minimizes the expected distortion of the query results for the TDist

distortion measure.
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The above considered the case where M , the number of results, was fixed to some

constant m. However, different queries have different numbers of results, so that M

is a random variable. However since Equation 6.15 is independent of m, the optimal

solution in the case where M varies is also given by Equation 6.15.

We now discuss several extensions to make our model of the operation Retrieve

more realistic. Consider the case where the candidate query-results are first pruned

based on a threshold for their cosine similarity to the query, then ranked purely by

the quantized PageRank q(rd). The intuition behind this model is that the ranking

function first chooses a set of documents thought to be relevant to the query, and

then ranks these relevant candidates by their popularity. Our experiments showed

virtually no correlation between the PageRank of a document, and its cosine similarity

to queries.12 Thus, since the pruned candidate set is expected to follow the same

distribution as the raw candidate set, the optimal solution is unchanged in this new

model.

A second extension to the model is to make the random sampling nonuniform.

In other words, each document can have a different probability of being chosen as a

candidate result. In this case, the hypergeometric distribution no longer applies since

different objects of a given type have different probabilities of being chosen.

We could assume that the result set S is constructed by a sequence of m multino-

mial trials (i.e., sampling with replacement). Let p(d) be the probability of document

d being chosen during a trial. Let p(celli) =
∑

dj∈celli
p(dj). Then the random vec-

tor < X0, . . . , Xn−1 > follows the multinomial distribution with parameters m and

< p(cell0), . . . , p(celln−1) >. The previous multinomial assumption holds if in addi-

tion to the requirement |D| � |S|, we also stipulate that no document dominates

the probability mass of its cell. If p(d) is extremely nonuniform among documents

with similar values of the attribute being quantized, then sampling with replacement

is no longer a good approximation to sampling without replacement. If the multino-

mial approximation does hold, then a derivation, similar to the above, shows that an

equiprobable partition is optimal.

12The exact correlations are not given here, but were all close to zero. This result is expected,
since PageRank is a purely link-based, query-independent estimate of page importance.
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In other words, instead of making the depths of all cells constant, we make the

probability mass assigned to each cell constant:

∑

dj∈celli

p(dj) =
1

n
(6.16)

A third extension to the model we consider is the following. Assume that in

addition to cosine pruning (which does not alter the distribution of ranking values

in S), we restrict the result set to the top k ranked documents. In this case, clearly

the distribution of the pruned result set, S, of size k, can no longer be modeled as a

uniform random sample of D. However, in this case, we can make use of the previous

extension. In particular, the pruning to the top k results can be modeled by setting

p(d) to be some function of rd, the PageRank of d.

In the general case, where the final rankings are generated using arbitrary ranking

functions that numerically combine the scores from several ranking vectors, developing

a probabilistic model for analytically deriving a solution becomes difficult; for such

cases, we currently rely on empirical results, measuring the average distortion across

a large number of sample queries.

6.4.3 Approximating Equal-Depth Partitioning

Using an equal-depth partition, although optimal for the TDist distortion measure,

could lead to additional overhead. In the encoding phase, the true equal-depth scheme

would require a binary search through the interval endpoints to determine the appro-

priate cell for each input value. Since the encoding step is performed offline, the cost

is acceptable. However, in the decoding step, if the reproduction value for a particular

cell is needed, a true equal-depth partition scheme requires a codebook that maps

from cells to cell centroids, leading to additional space as well as processing costs. We

show how we can approximate an equal-depth partition by using a simple compan-

der, with a compressor function derived from the distribution of the underlying data,

thus eliminating both the need for binary searches when encoding, and the need for

a codebook at runtime.

If the input data values were distributed uniformly, we would intuitively expect
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that a uniform partition would be similar to an equal-depth partition. We confirm this

intuition as follows. Let N be the total number of points, and let Ni be the number of

points that fall in cell i, for a quantizer with n cells. If the input points are distributed

uniformly at random, then clearly each Ni follows the binomial distribution with

parameters (N, 1
n
). Thus, the expected number of points in each cell is simply µ =

E[Ni] = N
n
. The probability that Ni falls within a tight range of this expectation is

high for large N , with n � N . For instance, for N = 108, n = 106, and using the

normal approximation for Ni, we get that Pr[.8µ ≤ Ni ≤ 1.2µ] u 0.95.

Note, however, that the input data is not uniform. In particular, as we saw in

Section 6.3.1, PageRank closely follows a power-law distribution. However, we can

devise a compressor function Geq(x) that transforms the data to follow a uniform

distribution, which we can then uniformly quantize, thus approximating an equal-

depth quantizer. Let X be a random variable following the power-law distribution,

with exponent 2.17; i.e., the pdf f(x) for X is f(x) = kx−2.17. Equivalently, if xmin is

the minimum possible rank, and xmax is the maximum possible rank, the cumulative

distribution function (cdf) 13 is F (x) = k
1.17

(x−1.17
min − x−1.17). The normalization

constant c is chosen so that F (xmax) = 1. We would like to find a function Geq(x)

such that Geq(X) corresponds to a uniform distribution, i.e., a Geq(x) such that

Pr[Geq(X) ≤ y] = y (6.17)

But it is easy to see that in fact, F (x) itself is such a function, since the cumulative

distribution of F (X) is:14

Pr[F (X) ≤ x] = Pr[X ≤ F−1(x)] = F (F−1(x)) = x (6.18)

Thus, a function Geq(x) that will transform the PageRank data to uniformly

distributed data is the cdf F (x), assuming that the PageRank distribution is a close fit

for the power-law. This transformation allows us to eliminate the explicit codebook,

instead using Geq(x) and G−1
eq (x) as the compressor and expander functions, resp., to

13The cdf is simply
∫

x

xmin

pdf(y)dy
14Note that ∀xf(x) > 0 implies that F (x) is strictly increasing, and thus invertible.
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approximate an equal-depth partition. The empirical distribution of Geq(X), shown

in Figure 6.4 as the series approx equal depth, does indeed appear to be roughly

uniform. The results that will be described in Section 6.4.5 show that in practice, this

approximation leads to performance similar to that of exact equal-depth partitioning.

6.4.4 Data Distribution: Corpus vs. Query Results

In Section 6.4.2, for deriving the optimal quantizer for the TDist distortion measure

(Equation 6.5), we assumed that the operation Retrieve(Q,D) could be modeled as

a uniform random sample of D. We now present empirical data showing that this

assumption is reasonable. We plotted the PageRank distribution of the raw query

results for each of 86 test queries; in every case, the PageRank distribution closely

matched the distribution of PageRank values in the corpus D as a whole. We display

the distribution of PageRank values for the results of two representative queries in

Figure 6.6.

The distributions were not an exact match, however, leading to the possibility

that equiprobable and equal-depth partitions will not behave identically. We ran-

domly partitioned our set of test queries into two halves. Using the first set, we

measured the distribution of PageRank values of documents in the results for the

queries. Figure 6.7 shows that this distribution deviates slightly from the distribu-

tion of PageRank values in the corpus as a whole; the distribution of PageRank values

when restricted to documents that appear as raw candidate results seems to follow a

power-law distribution with exponent close to 2.0. In other words, under our simpli-

fied model of the operation Retrieve, higher rank documents have a slightly higher

probability of appearing in raw query results.15

15By “raw query results,” we simply mean the set of documents containing all of the query terms
for some query.
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Figure 6.6: Comparison of the PageRank distribution for the corpus as a whole,
to the set of pages containing the query terms “tropical storms,” and the set of
pages containing the query terms “robotic technology.” As expected, the PageRank
distribution for the raw conjunctive query results is close to the distribution on the
overall corpus.

6.4.5 Empirical Performance Under Rank-Based Distortion

Measures

We now explore the empirical performance of various quantization schemes on sample

query results. Our test set of 86 queries consisted of 36 queries compiled from previous

papers and 50 queries created using the titles from the TREC-8 topics 401-450 [59].

Using a text index for our repository, we retrieved, for each query, the URLs for all

pages that contain all of the words in the query.

Figure 6.8 plots the average (over the 86 query results) of the distortion for the

6 strategies when using the TDist distortion measure. We see that as expected,

the equal depth strategy performs the best for all codelengths. Also note that

the approx equal depth and log strategies perform similarly. The mse optimal

strategy, which was optimal when using the MSE distortion criteria, is no longer

the optimal choice — this result signifies the need to consider appropriate notions of
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Figure 6.7: Comparison of the PageRank distribution for the repository as a whole,
to the distribution for the set of results to 43 of the test queries.

distortion when choosing quantization strategies for search rankings.

In Section 6.4.2, we argued that for the TDist distortion measure, for a retrieval

model in which documents in the corpus have different probabilities of appearing in

the results, an equiprobable, rather than an equal-depth, partition is superior. As

mentioned in Section 6.4.4, we noticed a slight correlation between the PageRank and

the probability of appearing in the raw candidate result set. To test the performance of

the equal prob strategy, we implemented the compander described in Section 6.4.3,

replacing the pdf with f(x) = kx−2.0. On the subset of test queries that were not used

in estimating the power-law exponent, we measured the performance, using the TDist

distortion measure, of this approximation to an equiprobable partition. The results

are shown in Figure 6.9, and demonstrate that the (approximate) equiprobable scheme

improves upon the (approximate) equal-depth scheme. However, the true equal-depth

scheme still performs the best by a small margin.

Figure 6.10 plots the average TDist distortion when the query results are first

pruned to include only the top 100 documents based on the pure cosine similarity to

the search query, then ranked using only the quantized PageRank value. We see that

as expected, the equal depth strategy performs the best for all codelengths. Also
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Figure 6.8: The average distortion for the various strategies when using the TDist
distortion measure (Equation 6.5) over the full lists of query results, for 86 test queries.

note that the log and approx equal depth strategies also perform similarly. No-

tably, the mse optimal strategy, which was optimal when using the MSE distortion

criteria, is no longer the optimal choice – this result signifies the need to consider

appropriate notions of distortion when choosing quantization strategies for search

rankings.

As expected, the results match the results of Figure 6.8; since cosine similar-

ity is uncorrelated with PageRank, the optimal strategy is unchanged from that of

Figure 6.8.

Our next query result scenario and distortion measure are as follows. Let τ be the

ordered list of the top 100 documents when query results are ranked by the product of

the cosine similarity of the query to the document and the PageRank of the document:

cosQd · rd. Let τq be the ordered list of the top 100 documents when query results

are ranked by cosQd · q(rd) for some quantizer q. Note that τ 6= τq because q(rd) is

less precise than rd. We measure distortion using the KDist measure described in

Section 6.2.2. As shown in Figure 6.11, in this scenario, the log strategy performs

the best for all codelengths in minimizing the mean KDist distortion.
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Figure 6.9: The approximate equiprobable partition outperforms the approximate
equal-depth partition on the TDist distortion measure. Documents with high Page-
Rank had slightly higher probabilities of being candidate results. The true equal-
depth partition strategy still has the least distortion.

The previous results demonstrate the importance of using a distortion measure

suited to the ranking function used by the search engine when choosing a quantization

strategy.

6.5 Variable-Length Encoding Schemes

Fixed length encoding schemes are simple to support in the implementation of the

ranking function, because the attribute values are at easily computed offsets into the

attribute vector.

Variable-length encodings have the potential to reduce the average codeword

lengths, and thus the overall storage requirement for the ranking vector. However,

the downside is a more complex decoding process, which is less efficient and may not

be practical, depending on the search engine’s performance criteria. In particular,
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Figure 6.10: The average distortion when using the TDist distortion measure over
pruned lists of query results, for 86 test queries. The pruned lists consisted of the top
100 results based on the cosine similarity of the documents to the query.

to retrieve the attribute values when the ranking vector is encoded with a variable-

length scheme, a sparse index16 is needed to allow the lookup of the block containing

the desired value. Furthermore, all the values in that block preceding the desired

value would also need to be decoded. In this section, we first explore the effectiveness

of variable-length schemes in minimizing storage, and then investigate the additional

runtime costs for decoding variable-length codes.

6.5.1 Variable-Length Encoding Performance

To investigate the effectiveness of variable-length schemes, we computed the average

Huffman codelengths for the quantization schemes previously discussed in Sections 6.3

and 6.4. When the MSE distortion of Figure 6.5 is plotted against the Huffman code-

length, rather than the fixed codelength, the uniform quantization strategy, linear,

16The index needs to be sparse, since otherwise any space savings from a variable-length coding
scheme would be lost.
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Figure 6.11: The average distortion when using the KDist distortion measure for
86 test queries. The rankings consisted of the top 100 results ranked by the score
cosQd · rd.

becomes the best performer, as shown in Figure 6.12.17 The variable-length encoding

for the cells eliminates the inefficiencies of uniform quantization. This effect carries

over to the result-based distortion measures as well, as shown in the replotting of

Figure 6.8, given as Figure 6.13. Note that the equal-depth approaches derive no

benefit from Huffman coding – the average codelength is reduced precisely when the

cell depths are nonuniform. Note that the average codeword lengths shown in these

graphs does not include the memory required for the additional indexes needed at

runtime for efficient decoding; we discuss decoding requirements in Section 6.5.2.

These empirical results indicate that if a variable-length encoding scheme is used

to generate codes for the cells, a uniform quantizer performs similarly to the optimal

quantizer, under the distortion measures we used.

17That uniform-width quantizers are near-optimal for variable-length encoding is known for the
MSE distortion measure [28].
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Figure 6.12: The MSE of 6 different strategies, plotted against the average codeword
length used. The MSE axis is on a log scale, and is normalized so that the MSE of the
4-bit linear compander is 1. For comparison, the optimal fixed-length performer is
also shown; the simple linear quantizer, using variable-length codes, performs better
than the optimal fixed-length strategy.

6.5.2 Variable-Length Encoding Costs

Variable-length encoders outperform fixed-length encoders, when judged on the av-

erage codelength needed to achieve a particular distortion, for most of the distortion

measures we have discussed. However, there is a processing overhead at query time to

decode the numeric attribute values. The driving motivation behind our work was to

reduce the per-document attribute lookup cost by fitting the ranking vectors in main

memory; variable-length encodings are only appropriate if fixed-length encodings are

not sufficient to allow the attribute vectors to be stored in memory. We next discuss

the offline and query-time costs of variable-length schemes compared to fixed-length

schemes.

During the offline step, compression of the input data values using variable-length

schemes requires first generating Huffman codes for the cells of the partition, and

then generating a compressed version of the input by replacing each input value with

the Huffman codeword assigned to the cell the value was mapped to. A fixed-length
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Figure 6.13: The average distortion for the variable length strategies when using the
TDist distortion measure over the full lists of query results, for 86 test queries. The
x-axis represents the average codeword lengths using a Huffman code.

scheme does not require generating a Huffman code — the intervals can be assigned

sequential l-bit IDs. However, the cost of generating a Huffman code is fairly low;

using the implementation of [57], we were able to generate the codebook and compress

the input data (360M values, 1.34GB) in under 10 minutes using an AMD Athlon

1533MHz machine with a 6-way RAID-5 volume. Given the minimal impact of small

variations in preprocessing cost, we did not explore further the offline overhead for

variable-length encoding schemes.

The impact of additional query-time costs, however, is more significant. For both

the fixed-length and variable-length scenarios, the query engine loads the entire se-

quence of quantized values into memory as a string b of bits. We assume that doc-

uments are identified by consecutively assigned document identifiers, so that the

document with ID i is the ith value inserted into the bit string. In the case of a

fixed-length scheme with codewords of length l, the attribute value associated with

some document i is simply the value of the bit substring b[i × l, (i + 1) × l − 1]. The

only cost is a memory lookup; in the case where l is not the length of standard integer
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data type (e.g., 8, 16, or 32), a few bit shifts are also required.

When using a variable-length code, however, for a given document i, finding the

exact location for its attribute value in the bit string becomes nontrivial. Decoding

from the beginning of the string until finding the ith value is of course inefficient,

making an index necessary. More specifically, since maintaining the exact offset into

the bitstring for each value would completely negate the benefit of compression, we

must use a sparse index which maintains offsets to blocks of values. Decoding the

attribute value for document i requires decoding all the values from the beginning

of the block up through the desired value. Thus, the decoding time is proportional

the block size B; more precisely, the expected number of decodes is B/2. Using

small blocks reduces the decoding time, but in turn increases the space usage of

the sparse index. Figure 6.14 shows the decode time, in µs/document vs. block

size, for 4 variable-length schemes. For comparison, the decode time for a fixed-

length encoding scheme is also given. These times were measured on an AMD Athlon

1533MHz machine with 2GB of main memory. The additional space overhead, in

bits/codeword, needed by the sparse index for 360M values for various block sizes is

plotted in Figure 6.15.

The times may seem very small, making the variable-length schemes seem at-

tractive; however, for a large-scale search engine, with thousands of concurrent active

queries, where each query has thousands of candidate results requiring attribute value

decodings for tens of attributes, the per-result decode time needs to be as inexpen-

sive as possible. As an illustrative example, consider a search engine with 1 billion

pages with a query workload of 10 queries/s. Assume that each document has a sin-

gle numeric property (e.g., PageRank) that needs to be decoded for calculating final

rankings. Also assume that the average query yields .01% of the repository as can-

didate results, so that the processing for each query requires retrieving the numeric

properties for 100,000 documents. If a variable-length scheme is used, so that the de-

code time for a single attribute value for a single document requires 35 µs, decoding

alone will require 3.5 seconds of CPU time per query, or equivalently, 35 machines

are needed to handle the query workload (if decoding were the only cost in the sys-

tem). If the decode time is instead 1 µs per document (e.g., utilizing a fixed-length



CHAPTER 6. EFFICIENT ENCODINGS FOR RANKING VECTORS 147

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

0 10 20 30 40 50 60 70 80 90 100

sparse index block size

d
ec

o
d

e 
ti

m
e 

p
er

 d
o

ci
d

 (
m

ic
ro

se
co

n
d

s) 10.28 bits/doc

6.41 bits/doc

8.38 bits/doc

4.49 bits/doc

fixed-length
(8-32 bits/doc)

0.51

Figure 6.14: The decode time in microseconds per document for a PageRank vector
quantized uniformly using variable-length codes with 4 different average codeword
lengths. The decode time using a fixed-length code is also given for comparison.

encoding scheme), only 0.1s is spent decoding for each query; equivalently, a single

machine can handle the query workload. Of course there are other significant costs

in the system in addition to attribute value decode time; our goal in this example is

simply to provide some intuition as to why per-document decode times need to be

kept small.

6.6 Related Work

There has been much work in the field of compression in the context of large-scale

Web search. An excellent overview of text-index compression techniques can be found

in [74]. Suel and Yuan [72] investigate strategies for compressing the Web hyperlink

graph. Raghavan and Garcia-Molina [67] explore techniques for compressing the Web

link graph in ways that allow for efficient query processing.
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Figure 6.15: The additional space overhead needed by the sparse index, measured as
bits/codeword, for block sizes ranging from 10 to 200.

Our work explores the development of lossy encodings for auxiliary numeric rank-

ing vectors, where the quality of an encoding is judged by its effect on the fi-

nal rankings induced over query results. An approach for efficiently encoding the

document-length vector, needed for cosine computations, was studied in [58]. How-

ever, that work did not consider variable-length encodings, and did not provide ana-

lytic results for the behavior of the encodings under various models for query result

distributions.

6.7 Conclusion

We have seen that simple fixed-length encoding schemes can substantially reduce the

space needed for holding ranking indexes. For a search index of a billion pages, using

a standard 4-byte single-precision floating point representation, each replica18 of the

index would require 4GB of main memory for each PageRank vector desired. A system

utilizing 16 Topic-Sensitive PageRank values per page would thus require 64GB of

18For fast query response times, search engines generally utilize several many replicated search
indexes.
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main memory per replica. Using the log compander, which performs well with respect

to all of the distortion criteria we considered, with 12-bit fixed length codewords, we

can reduce the storage requirement to 24GB per replica. Further reductions in storage

requirements, at the expense of additional complexity, are possible with the use of

variable-length encoding schemes.
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6.A Optimal Quantizer: Derivation Using the Mul-

tivariate Hypergeometric Distribution19

The derivation of the optimal quantizer under the distortion measure given in Equa-

tion 6.4, when the operation Retrieve is modeled as a uniform random sample, with-

out replacement, is very similar to the derivation given in Section 6.4.2. As before,

we want to minimize Equation 6.5, although each Xi now follows the hypergeometric,

rather than the binomial, distribution. Using the known mean and variance for the

hypergeometric distribution [29], with parameters N , Ni, and m, and letting pi = Ni

N
,

we compute E[X2
i ] as before:

E[Xi] = mpi (6.19)

var[Xi] ≡ E[X2
i ] − E[Xi]

2 (6.20)

var[Xi] = mpi(1 − pi)
N − m

N − 1
(6.21)

E[X2
i ] = mpi(1 − pi)

N − m

N − 1
+ (mpi)

2 (6.22)

Plugging E[X2
i ] back into Equation 6.5 and simplifying, we get

E[Distortionm] =
1

m2

∑

E[X2
i ] (6.23)

=
1

m2

∑

i

(

mpi(1 − pi)
N − m

N − 1
+ (mpi)

2
)

(6.24)

=
1

m2

∑

i

(N − m

N − 1
(mpi − mp2

i ) + m2p2
i

)

(6.25)

=
N − m

m(N − 1)

∑

i

pi +
(

1 − N − m

m(N − 1)

)

∑

i

p2
i (6.26)

=
N − m

m(N − 1)
+
(

1 − N − m

m(N − 1)

)

∑

i

p2
i (6.27)

Given values for N and m, the above is equivalent to minimizing
∑

i p
2
i subject to

the constraint
∑

i pi = 1, leading to the solution given by Equation 6.15, i.e., an

equal-depth partitioning scheme.

19Mayur Datar and Aristides Gionis provided assistance with the derivation that follows.
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