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ABSTRACT
The rapid growth of the Web has led to the development
of many techniques for enhancing search rankings by us-
ing precomputed numeric document attributes such as the
estimated popularity or importance of Web pages. For effi-
cient keyword-search query processing over large document
repositories, it is vital that these auxiliary attribute vec-
tors, containing numeric per-document properties, be kept
in main memory. When only a small number of attribute
vectors are used by the system (e.g., a document-length vec-
tor for implementing the cosine ranking scheme), a standard
4-byte, single-precision floating point representation for the
numeric values suffices. However, for richer search rank-
ings, which incorporate additional numeric attributes (e.g., a
set of page-importance estimates for each page), it becomes
more difficult to maintain all of the auxiliary ranking vec-
tors in main memory. We propose lossy encoding schemes
based on scalar quantization that efficiently encode auxil-
iary numeric properties, such as PageRank, an estimate of
page importance used by the Google search engine. Unlike
standard scalar quantization algorithms, which concentrate
on minimizing the numerical distortion caused by lossy en-
codings, we seek to minimize the distortion of search-result
rankings.

1. INTRODUCTION
Modern Web search engines incorporate a variety of nu-

merical Web-page attributes in their search ranking func-
tions in an attempt to bring order to the ever-growing Web.
Given the massive repositories that Web search engines must
index, with large numbers of concurrent users issuing queries
to the system, developing memory-efficient encodings for
these numerical attributes, so that they can be cached in
main memory, is an increasingly important challenge.

An overview of a scalable keyword-search system helps
make clear why per-document attributes, such as page pop-
ularity, must be maintained in main memory. As depicted
in Figure 1, a typical Web search system utilizes an inverted
text index I and a set of auxiliary ranking vectors { ~Ri}. For
concreteness, consider a system with only one such vector,
~Rp, containing per-document popularity estimates. The in-
dex I contains information about the occurrences of terms
in documents and is used to retrieve the set of document
IDs for documents satisfying some query Q. The index ~Rp

is then consulted to retrieve the overall popularity score for
each of these candidate documents. Using the information
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retrieved from I and ~Rp, a composite document score is
generated for each candidate result, yielding a final ranked
listing.

The inverted index I is constructed offline and provides
the mapping {t → fdt}, where fdt describes the occurrence
of term t in document d. In the simplest case, fdt could be
the within-document frequency of t. The number of random
accesses to I needed to retrieve the necessary information
for answering a query Q exactly equals the number of terms
in the query, |Q|. Because queries are typically small, con-
sisting of only a few words, it is practical to keep the index
I on-disk and perform |Q| seeks for answering each query.

The auxiliary index ~Rp is also constructed offline, and
provides the mapping {d → rd}, where rd is the popular-
ity of document d according to some computed notion of
popularity. Note that in contrast to I, the index ~Rp pro-
vides per-document information. The search system typi-
cally must access ~Rp once for each candidate document of
the result set, which could potentially be very large. These
random accesses would be prohibitively expensive, unless ~Rp

can be kept entirely in main memory. Whereas the query
length is the upper bound for the accesses to I, the number
of candidate results retrieved from I is the upper bound for
accesses to ~Rp. One way to reduce the number of random

accesses required is to store the attribute values of ~Rp in I
instead; e.g., create an index I ′ that provides the mapping
{t → {fdt, rd}}. However, this requires replicating the value
rd once for each distinct term that appears in d, generally an
unacceptable overhead especially if more than one numeric
property is used.

Much work has been done on compressing I, although
comparatively less attention has been paid to effective ways
of compressing auxiliary numeric ranking vectors such as
~Rp. The typical keyword search system has only one such

auxiliary ranking vector, ~Rl — the document lengths needed
in computing the query-document cosine similarity [19] —
and can be kept in main memory without much difficulty.
However, for richer ranking schemes, such as PageRank and
topic-sensitive PageRank [12, 6, 17, 8], which require con-
sulting a set of auxiliary ranking vectors, much more con-
sideration needs to be given to the encodings used for the
attribute values.

Note that falling main memory prices do not alleviate the
need for efficient encodings; increasingly affordable disk stor-
age is leading to rapidly growing Web-crawl repositories, in
turn leading to larger sets of documents that need to be
indexed. Utilizing a rich set of per-document numeric rank-
ing attributes for growing crawl repositories and growing
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Figure 1: A simplified illustration of a search engine with a standard inverted text-index and 3 auxiliary
numerical attributes for each document. Note that the number of random accesses to I is typically small,
whereas the number of accesses to { ~Ri} is large. Our goal is to minimize the space needed for the data

structure { ~Ri}.

numbers of users thus continues to require efficient encod-
ing schemes.

In this paper, we concentrate on developing efficient en-
codings for PageRank vectors, which are importance esti-
mates for Web pages computed using the hyperlink graph
of the Web [12, 6, 5, 17, 8]. In Section 2, we briefly review
scalar quantization, which provides the framework for our
approach, and introduce new distortion criteria for measur-
ing quantizer performance. In Section 3, we discuss fixed-
length encoding schemes and analyze their performance us-
ing a traditional numerical distortion measure. In Section 4,
we investigate in detail distortion measures more appropri-
ate for the case of search ranking functions, and analyze the
performance of various quantization strategies both analyti-
cally and empirically. In Section 5, we extend our approach
to consider variable-length encoding schemes and discuss
their performance. We conclude with a review related work
in Section 6.

2. SCALAR QUANTIZATION

2.1 Quantization Rules
An excellent introduction to quantization can be found

in [3]; we give only a brief review here. Let C ⊂
�
; for

our work, assume C is finite. A quantizer is a function
q(x) :

�
→ C that partitions

�
into a set S of intervals and

maps values in the same interval to some common repro-
duction value in C. In other words, q(x) maps real values to
some approximation of the value. Let n = |C|. As the values
in C can be indexed from 0 to n − 1, one way to compactly
represent values in the range of q(x) is with fixed-length
codes of length dlog2ne bits, in conjunction with a code-
book mapping the fixed-length codes to the corresponding
reproduction value. Let x̂ = q(x). Given the sequence {ai}

of real numbers as input, a compression algorithm based on
fixed-length scalar quantization would output the sequence
of l-bit codewords âi, along with the codebook mapping each
distinct codeword to its corresponding reproduction value.

The error that results from quantizing a particular input
value x to the reproduction value x̂ is typically quantified
by a distortion measure. We consider distortion measures in
Section 2.2.

The simplest fixed-length encoding simply partitions the
domain of possible values into n cells of uniform width us-
ing a uniform quantizer un, where n is typically chosen
to be a power of 2. A more complex quantizer could use
a nonuniform partition to lower the distortion. Alterna-
tively, instead of using nonuniform partitions, the input val-
ues can be transformed with a nonlinear function G(x),
called a compressor, then uniformly quantized using un.
The inverse function G−1(x) can be used for reconstructing
an approximation to the original value. Such a quantizer
G−1(un(G(x))) is called a compander1; it is known that any
fixed-length, nonuniform quantizer can be implemented by
an equivalent compander [3]. For simplicity, unless other-
wise noted, we will define quantization strategies as com-
panders.

Quantizers can also make use of variable-length codes for
the elements in set C. If shorter codewords are assigned to
the elements in C that more frequently correspond to values
in the input data being compressed, the average codeword
length can be reduced. The simplest scheme would use a
Huffman code for C, using the known or estimated frequency
of the elements in C to generate the optimal Huffman codes.

1Short for compressor, expander. Note that companders
save on the need for explicit codebooks, as the partition-
ing of the domain is uniform. G−1(x) takes the place of the
codebook.
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2.2 Measuring Distortion
The scalar quantization literature in general considers the

loss in numerical precision when comparing the expected dis-
tortion of quantization schemes. For instance, the most com-
monly used measure of distortion for a value is the squared
error:

d(x, q(x)) = (x − q(x))2 (1)

The inaccuracy of a particular quantization function q for
a particular set of input data is then the mean distortion,
denoted D(q). If d(x, q(x)) is the squared error as defined
above, then D(q) is referred to as the mean squared error,
or MSE.

However, in the case of document ranking, the numerical
error of the quantized attribute values themselves are not
as important as the effect of quantization on the rank or-
der induced by these attributes over the results to a search
query. In our work, we show that distortion measures based
on induced rankings of search-query results lead to different
choices for optimality.

Assume each document in the corpus has k associated
numerical ranking attributes. Note that some of these at-
tributes, such as PageRank, are precomputed and stored,
and some are query-specific and hence generated at query-
time. As the goal of quantization is to reduce space require-
ments of the precomputed indexes, it is used only on the
precomputed attributes. The attributes can be used in one
of two ways to rank a set of documents that are candidate
results to some search query.2 The scenarios we consider
are:

1. Each of the k attributes can be used separately to rank
the candidate result documents to generate k interme-
diate rank orders, which are then aggregated to gener-
ate a final rank order over the candidates [1].

2. The values for the k attributes for the documents can
be combined numerically to form a composite score,
which is then used to rank the set of candidate docu-
ments.

Under Scenario 1, quantization has a very simple effect
on the intermediate rank orders. Quantization can map
similar values to the same cell, but can never swap the
relative order of two values; for any two values x and y,
and any quantizer q, we know that x < y ⇒ q(x) ≤ q(y).
Thus, an intermediate rank order using a quantized version
of an attribute differs from the intermediate rank order us-
ing the original attribute only through the introduction of
false ties.3 This property suggests the following distortion
measure. Let the distortion of a quantizer on a particular
attribute, for a particular candidate result set of size m, be
measured as the sum of squares of the number of candidate
documents mapped to the same cell, normalized so that the
maximum distortion is 1. Assuming the original values for
the attribute were distinct, this distortion is closely related
to the fraction of document pairs in the result set that are

2E.g., the candidate result set might consist of documents
that contain all of the query terms.
3The final rankings, after rank aggregation, may of course
differ in more complex ways, depending on how the aggre-
gation is done. If in such a case, measuring the distortion of
final rankings is desired, the distortion measure of Scenario 2
is more appropriate.

falsely tied. More formally, let R be the query-result set,
with m = |R|, and let Xi be the number of documents in R
mapped to cell i for the attribute under consideration. The
distortion of an n-cell quantizer on the set R is given by:

Distortion(qj ,R) =
1

m2

n−1�

0

X2

i (2)

We refer to this distortion measure as TDist. We can eval-
uate the relative performance of different quantizers based
on the expectation (or average over some test query set) of
the above distortion. Different search models for computing
this expectation are given in Section 4. The empirical per-
formance of different quantizers over a test set of queries on
this distortion measure are presented in Section 4.5.

Under Scenario 2, we cannot use the above distortion mea-
sure. The error can no longer be measured solely through
artificial ties. In the final rankings induced by the compos-
ite score, the relative ordering of documents can be different.
We proceed by defining a more suitable distortion measure,
KDist, based on techniques for comparing rank orders de-
scribed in [1]. Consider two partially ordered lists of URLs,
τ and τq, each of length m, corresponding to rankings in-
duced by exact and approximate composite scores, resp. Let
U be the union of the URLs in τ and τq. If δ is U − τ , then
let τ ′ be the extension of τ , where τ ′ contains δ appearing
after all the URLs in τ .4 We extend τq analogously to yield
τ ′

q. We define our distortion measure KDist as follows:

KDist(τ, τq) =

|{(u, v) : τ ′, τ ′
q disagree on order of (u, v), u 6= v}|

(|U |)(|U | − 1|)
(3)

In other words, KDist(τ, τq) is the probability that τ and τq

disagree on the relative ordering of a randomly selected pair
of distinct nodes (u, v) ∈ U × U . We present the empirical
performance of different quantizers on the above distortion
measure in Section 4.5.

3. FIXED-LENGTH ENCODING SCHEMES
In this section, we discuss fixed-length encoding schemes,

describe the optimal encoding under the MSE distortion
measure, and give the empirical MSE-performance of vari-
ous fixed-length encoding schemes. The “best” fixed-length
quantizer q can be chosen by answering the following three
questions:

1. What is the appropriate measure of distortion D(q) for
the application?

2. How many cells should the partition have? In other
words, what is the appropriate choice for n, noting
that (a) the codeword length is given by dlog2ne, and
(b) smaller n will lead to higher distortion.

3. For a particular n, what compressor function G(x)
should be used to minimize distortion?

Answering Question 2 is simply a matter of choosing a
codeword length that will allow the encoded ranking vector
to fit in the available memory. If we answer Question 1 by
choosing the MSE, then results from the quantization litera-
ture ([14, 3]), let us choose the optimal compressor function

4The URLs within δ are not ordered with respect to one
another.
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based on the distribution of the input values, leading to the
answer for Question 3. We begin with this case (i.e., where
D(q) is the MSE), and then discuss the use of more appro-
priate distortion measures in Section 4.

The optimal compressor function G(x) (i.e., the G(x) which
will minimize the quantization MSE) is determined by the
probability density function (pdf) of the input data, p(y).
In particular, the optimal compressor is given by the follow-
ing [14]:

G(x) = c · � x

−∞

p(y)1/3dy (4)

Fortunately, the entire ranking vector that we would like to
encode is available, so we can determine p(y) easily. In Sec-
tion 3.1, we look at the distribution of values of PageRank
vectors in our dataset, and in Section 3.2, we discuss the
MSE performance of 6 fixed-length coding schemes.

3.1 Data Distribution
To compute the right hand side of Equation 4, we examine

the relative frequency distribution p(y) of the values of the
PageRank ranking vectors that we want to encode. Page-
Rank is an iterative computation performed over the link
graph of the Web that assigns an estimate of importance to
every page on the Web [12]. A topic-sensitive extension to
PageRank [6] modifies the link-graph computations to as-
sign an estimate of importance, with respect to particular
topics, to every page on the Web.

We used as our dataset the Stanford WebBase [7] crawl
repository of 120 million pages, containing a total of 360
million distinct URLs. This latter count includes pages that
were linked to from crawled pages, but were not themselves
crawled. Note that using a standard 4-byte floating point
representation, the PageRank vector for these 360 million
pages requires 1.34GB of space. Figure 2 shows the distri-
bution of the standard PageRank values for this dataset on
a log-log plot. In plotting the distribution, we used logarith-
mic binning, with the counts normalized by the bin width.
In other words, when computing the relative counts shown
on the y-axis, we used bins of equal width on a logarith-
mic scale, and divided the counts by the actual width of the
bin. This technique was needed, as the data is very sparse
for high rank values.5 The distribution appears to follow a
power-law with exponent close to 2.17, similar to the find-
ings of Pandurangan et al. [13] on a different dataset. They
also provide a graph-generation model that explains this ob-
served property of the Web.

The topic-specific rank vectors constructed following the
methodology proposed in [6] behave similarly. For instance,
the values for the PageRank vector generated with respect to
the Computers topic follow the distribution shown in Fig-
ure 3; the other topic-specific PageRank scores we measured
also follow a similar distribution, but are not shown here.
Note that the power-law fit is not quite as close, with the
slope steepening noticeably in the tail. The best-fit power-
law exponents for the topic-specific PageRank distributions
all ranged between 1.7 and 1.8. Because developing efficient
encodings for the topic-specific rank vectors is analogous
to developing encodings for the standard PageRank vector,
the remaining discussion focuses solely on encodings for the
standard PageRank vector.

5A similar approach is used in [15].
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Figure 2: PageRank distribution on a log-log scale.
The crawl graph included 360M URLs generated
from a 120M page repository. The best-fit power-
law curve is shown, with a slope close to -2.1, in
agreement with prior findings.
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Figure 3: Computers-biased PageRank distribution
on a log-log scale. The slope is close to -1.8, less
steep than the ordinary PageRank distribution.

When computing the optimal compressor function for the
standard PageRank vector, for minimizing the MSE, we
compute Equation 4 with the pdf p(y) = k ·y−2.17, y > ymin.

3.2 MSE Performance of Fixed-Length Schemes
In this section, we compare the performance of various

fixed-length encoding schemes using the mean-squared-error
(MSE) measure. Except for the equal depth strategy, the
quantizers are implemented as companders. A summary of
the strategies we consider is given in Table 1. To illustrate
the behavior of the quantization strategies on the PageRank
values for the 360 million URLs, Figure 46 shows the relative
number of input points mapped to each cell (i.e., the depth
of each cell) for 6 different strategies when using 256 cells.
The y-axis is a log scale, to facilitate comparison. The figure
depicts how the various compressor functions transform the
input data, whose distribution was earlier shown in Figure 2.
Because of PageRank’s power-law distribution, we see that
for the linear (i.e., uniform-width) strategy most cells are

6For clarity, in all of the graphs that follow, the order of the
entries in the graph legend reflects the relative position of
the corresponding curves in the graph. Curve markers are
consistent across the graphs as far as possible.
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Figure 5: The MSE of 6 different strategies, for
codeword lengths varying from 4 to 24. The MSE
axis is on a log scale, and is normalized so that the
MSE of the 4-bit linear compander is 1.

empty. The other 4 strategies use nonuniform partitions to
divide up the range of possible PageRank values.

To compare the strategies in the traditional numeric fash-
ion, we computed the MSE for each strategy for encoding
the standard PageRank vector. We varied the number of
cells used from 24 to 224; i.e., the number of bits necessary
for a fixed-length code varied from 4 to 24 bits per value.
Figure 5 graphs the MSE vs. code-length for each of the
strategies. We see that mse optimal performs the best,
as expected, with log and sqrt not far behind. We will
see in the following section, however, that if we use a distor-
tion measure based on the induced rankings of query results,
rather than the MSE, the choice of optimal strategy differs.

4. OPTIMIZING FIXED-LENGTH ENCOD-
INGS FOR RANK-BASED DISTORTION
MEASURES

We now discuss how we to choose the optimal quantiza-

tion rule in the context of search ranking, under various dis-
tortion measures and probabilistic models for the keyword-
search task. In general, unless both the search model and
distortion measure are fairly simple, analytically deriving
the optimal quantization rule becomes complex. We derive
optimal quantization rules for simple cases, and rely solely
on experimental data for more complex cases.

An outline of this section follows. In Section 4.1, we in-
troduce a simplified model of the keyword search process.
We analytically derive the optimal quantization strategy for
this model in Section 4.2, and then extend the derivation to
richer models of search. Section 4.3 describes a technique to
approximate the optimal strategy using a simple compan-
der. In Section 4.4, we present empirical results describing
the distribution of our data that provides justification for our
simplified models. Section 4.5 presents experimental results
illustrating the performance of the quantization strategies
under various ranking models and corresponding distortion
measures.

4.1 Retrieval and Ranking Model
We begin with a greatly simplified model of keyword search

to allow for the analysis of the effects of quantization on
query-result rankings, and later discuss extensions.

The first part of the model describes the retrieval of the
candidate documents for a query. Let D be the set of doc-
uments in the Web-crawl repository. Retrieve(D,Q) is de-
fined as the operation that returns the set R ⊂ D consisting
of documents that satisfy the query Q.7 For simplicity, we
model the operation Retrieve(D,Q) as generating a ran-
dom sample of size M from D, with each element of D hav-
ing an equal probability of appearing in the result set.

The second part of the model describes the ranking of
the documents. Consider a single auxiliary ranking vector
that is used to rank the documents in R; e.g., assume that
the candidate results will be ranked solely by their Page-
Rank, ignoring any additional information available. Also
assume that all full-precision PageRank values for the candi-
date documents are distinct.8 The full-precision PageRank
values Rp(d) induce a total ordering over the set R. If we
use quantized PageRank values q(Rp(d)), then a weak or-
dering is induced instead. In other words, the relative order
of the documents in R are preserved except for false ties
between documents with PageRank values mapped to the
same quantizer cell.

The third part of the model is the distortion measure used
to judge the rank order inaccuracy caused by quantization.
In the simplified scenario being developed, this measure con-
sists of penalizing the false ties, as described in Scenario 1
of Section 2.2.

4.2 Derivation of Optimal Quantizers
For the simple model just discussed, we now derive the

optimal quantizer. In particular, consider the case where
Retrieve(Q,D) samples M documents from a repository D
uniformly at random, without replacement. Let Xi be the
number of query results mapped to cell i.

The number of documents returned by Retrieve(Q,D)
will be different for different queries; i.e., M is a random

7E.g., R could be the set of documents that contain all of
the query terms in Q.
8This assumption fails to hold only for values close to the
minimum.
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Table 1: A description of 6 quantization strategies we compare.

Strategy Description

linear A uniform quantizer (partition uses cells of equal width)
sqrt Compander with G(x) ∝

√
x

log Compander with G(x) ∝ log x

mse optimal Compander with G(x) ∝ x−2.17

approx eq depth Compander that approximates equal depth partitions, as described in Sec-
tion 4.3

eq depth Quantizer where partition assigns an equal number of points to each cell

variable. For now, consider the case where M = m for
some constant m. As described in Section 2.2, we let the
distortion of a particular result of length m be measured by
the sum of squares of the number of points in the same cell,
normalized so that the maximum distortion is 1; in other
words, we measure the distortion of the results R, where
|R| = m, using a quantizer with n cells as:

Distortionm(qj) =
1

m2

n−1�

0

X2

i (5)

We can treat D, the documents in the corpus, as a multi-
type population, with n types. The type of each docu-
ment is simply the cell it is mapped to by the quantizer
qj . Let Ni represent the number of points in the input data
set9 that the quantizer maps to cell i (i.e., the count of
each type), and let N be the total number of input values
(i.e., N = � Ni). Because the operation Retrieve(D,Q)
samples from the population D uniformly at random, with-
out replacement, < X0, . . . , Xn−1 > follows the multivari-
ate hypergeometric distribution, with parameters m and
< N0, . . . , Nn−1 >. We assume that |D| � |R|, so that the
multinomial distribution (i.e., the distribution that would
arise if Retrieve sampled with replacement), with parame-

ters m and < N0

N
, . . . ,

Nm−1

N
>, is a reasonable approxima-

tion.10 The task of finding the optimal n-cell quantizer is
reduced to choosing cell depths which minimize the expecta-
tion of Equation 5. Note that linearity of expectation allows
us to consider each Xi separately, even though they are not
independent:

E[Distortionm] =
1

m2
E[

�
X2

i ] (6)

=
1

m2

�
E[X2

i ] (7)

Since each Xi follows a binomial distribution, E[X2

i ] is easy
to find. Letting pi = Ni

N
, and using the known mean and

variance of binomial random variables [4], we see that

E[Xi] = mpi (8)

var[Xi] ≡ E[X2

i ] − E[Xi]
2 (9)

var[Xi] = mpi(1 − pi) (10)

E[X2

i ] = mpi(1 − pi) + (mpi)
2 = mpi + m(m − 1)p2

i (11)

9I.e., the PageRank vector we are compressing.
10The approximation has no impact on the final solution; see
Appendix A for the full derivation using the multivariate
hypergeometric distribution

So we need to find the pi that minimizes

E[Distortionm] =
1

m2

�
E[X2

i ] (12)

=
1

m2

�

i

�
mpi + m(m − 1)p2

i � (13)

=
1

m
+

m − 1

m

�

i

p2

i (14)

The above is equivalent to minimizing � i p2

i subject to the
constraint � i pi = 1. Lagrange multipliers can be used to
show that the optimal solution is given by

p∗
i =

1

n
(15)

N∗
i = Np∗

i =
N

n
(16)

In other words, an equal-depth partition scheme that places
equal numbers of points in each cell minimizes the expected
distortion of the query results for the TDist distortion mea-
sure.

The above considered the case where M , the number of
results, was fixed to some constant m. However, different
queries have different numbers of results, so that M is a
random variable. However since Equation 16 is independent
of m, the optimal solution in the case where M varies is also
given by Equation 16.

We now discuss several extensions to make our model of
the operation Retrieve more realistic. Consider the case
where the candidate query-results are first pruned based on a
threshold for their cosine similarity to the query, then ranked
purely by the quantized PageRank q(Rp). The intuition
behind this model is that the ranking function first chooses
a set of documents thought to be relevant to the query, and
then ranks these relevant candidates by their popularity.
Our experiments showed virtually no correlation between
the PageRank of a document, and its cosine similarity to
queries.11 Thus, since the pruned candidate set is expected
to follow the same distribution as the raw candidate set, the
optimal solution is unchanged in this new model.

A second extension to the model is to make the random
sampling nonuniform. In other words, each document can
have a different probability of being chosen as a candidate re-
sult. In this case, the hypergeometric distribution no longer
applies since different objects of a given type have differ-
ent probabilities of being chosen. We could assume that
the result set R is constructed by a sequence of m multi-
nomial trials (i.e., sampling with replacement). Let p(d)

11The exact correlations are not given here, but were all close
to zero. This result is expected, since PageRank is a purely
link-based, query-independent estimate of page importance.
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be the probability of document d being chosen during a
trial. Let p(celli) = � dj∈celli

p(dj). Then the random vec-

tor < X0, . . . , Xn−1 > follows the multinomial distribution
with parameters m and < p(cell0), . . . , p(celln−1) >. The
previous multinomial assumption holds if in addition to the
requirement |D| � |R|, we also stipulate that no document
dominates the probability mass of its cell. If p(d) is ex-
tremely nonuniform among documents with similar values
of the attribute being quantized, then sampling with re-
placement is no longer a good approximation to sampling
without replacement. If the multinomial approximation does
hold, then a derivation, similar to the above, shows that an
equiprobable partition is optimal. In other words, instead of
making the depths of all cells constant, we make the proba-
bility mass assigned to each cell constant:

�

dj∈celli

p(dj) =
1

n
(17)

In the general case, where the final rankings are generated
using arbitrary ranking functions that numerically combine
the scores from several ranking vectors, developing a prob-
abilistic model for analytically deriving a solution becomes
difficult; for such cases, we currently rely on empirical re-
sults, measuring the average distortion across a large num-
ber of sample queries.

4.3 Approximating Equal-Depth Partitioning
Using an equal-depth partition, although optimal for the

TDist distortion measure, could lead to additional overhead.
In the encoding phase, the true equal-depth scheme would
require a binary search through the interval endpoints to de-
termine the appropriate cell for each input value. Since the
encoding step is performed offline, the cost is acceptable.
However, in the decoding step, if the reproduction value
for a particular cell is needed, a true equal-depth partition
scheme requires a codebook that maps from cells to cell cen-
troids, leading to additional space as well as processing costs.
We show how we can approximate an equal-depth partition
by using a simple compander, with a compressor function
derived from the distribution of the underlying data, thus
eliminating both the need for binary searches when encod-
ing, and the need for a codebook at runtime.

If the input data values were distributed uniformly, we
would intuitively expect that a uniform partition would be
similar to an equal-depth partition. We confirm this intu-
ition as follows. Let N be the total number of points, and let
Ni be the number of points that fall in cell i, for a quantizer
with n cells. If the input points are distributed uniformly
at random, then clearly each Ni follows the binomial distri-
bution with parameters (N, 1

n
). Thus, the expected num-

ber of points in each cell is simply µ = E[Ni] = N
n

. The
probability that Ni falls within a tight range of this expec-
tation is high for large N , with n � N . For instance, for
N = 108, n = 106, and using the normal approximation for
Ni, we get that Pr[.8µ ≤ Ni ≤ 1.2µ] � 0.95.

Note, however, that the input data is not uniform. In par-
ticular, as we saw in Section 3.1, PageRank closely follows
a power-law distribution. However, we can devise a com-
pressor function Geq(x) that transforms the data to follow a
uniform distribution, which we can then uniformly quantize,
thus approximating an equal-depth quantizer. Let X be a
random variable following the power-law distribution, with

exponent 2.17. I.e., the pdf f(x) for X is f(x) = kx−2.17.
Equivalently, if xmin is the minimum possible rank, and
xmax is the maximum possible rank, the cumulative dis-
tribution function (cdf) 12 is F (x) = k

1.17
(x−1.17

min − x−1.17).
The normalization constant c is chosen so that F (xmax) = 1.
We would like to find a function Geq(x) such that Geq(X)
corresponds to a uniform distribution, i.e., a Geq(x) such
that

Pr[Geq(X) ≤ y] = y (18)

But it is easy to see that in fact, F (x) itself is such a function,
since the cumulative distribution of F (X) is:13

Pr[F (X) ≤ x] = Pr[X ≤ F−1(x)] = F (F−1(x)) = x (19)

Thus, a function Geq(x) that will transform the Page-
Rank data to uniformly distributed data is the cdf F (x),
assuming that the PageRank distribution is a close fit for
the power-law. This transformation allows us to eliminate
the explicit codebook, instead using Geq(x) and G−1

eq (x) as
the compressor and expander functions, resp., to approxi-
mate an equal-depth partition. The empirical distribution of
Geq(X), shown in Figure 4 as the series approx equal depth,
does indeed appear to be roughly uniform. The results that
will be described in Section 4.5 show that in practice, this
approximation leads to performance similar to that of exact
equal-depth partitioning.

4.4 Data Distribution:
Corpus vs. Query Results

In Section 4.2, for deriving the optimal quantizer for the
TDist distortion measure (Equation 6), we assumed that
the operation Retrieve(Q,D) could be modeled as a uni-
form random sample of D. We now present empirical data
showing that this assumption is reasonable. We plotted the
PageRank distribution of the raw query results for each of
86 test queries; in every case, the PageRank distribution
closely matched the distribution of PageRank values in the
corpus D as a whole. We display the distribution of Page-
Rank values for the results of two representative queries in
Figure 6.

The distributions were not an exact match, however, lead-
ing to the possibility that equiprobable and equal-depth par-
titions will not behave identically. We randomly partitioned
our set of test queries into two halves. Using the first set,
we measured the distribution of PageRank values of docu-
ments in the results for the queries. Figure 7 shows that this
distribution deviates slightly from the distribution of Page-
Rank values in the corpus as a whole; the distribution of
PageRank values when restricted to documents that appear
as raw candidate results seems to follow a power-law dis-
tribution with exponent close to 2.0. In other words, under
our simplified model of the operation Retrieve, higher rank
documents have a slightly higher probability of appearing in
raw query results.14

12The cdf is simply � x

xmin
pdf(y)dy

13Note that ∀xf(x) > 0 implies that F (x) is strictly increas-
ing, and thus invertible.

14By “raw query results”, we simply mean the set of docu-
ments containing all of the query terms for some query.
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Figure 6: Comparison of the PageRank distribution
for the corpus as a whole, to the set of pages contain-
ing the query terms “tropical storms”, and the set
of pages containing the query terms “robotic tech-
nology”. As expected, the PageRank distribution
for the raw conjunctive query results is close to the
distribution on the overall corpus.
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Figure 7: Comparison of the PageRank distribution
for the repository as a whole, to the distribution for
the set of results to 43 of the test queries.

4.5 Empirical Performance Under Rank-Based
Distortion Measures

We now explore the empirical performance of various quan-
tization schemes on sample query results. Our test set of 86
queries consisted of 36 queries compiled from previous pa-
pers and 50 queries created using the titles from the TREC-8
topics 401-450 [11]. Using a text index for our repository,
we retrieved, for each query, the URLs for all pages that
contain all of the words in the query.

Figure 8 plots the average (over the 86 query results) of
the distortion for the 6 strategies when using the TDist dis-
tortion measure. We see that as expected, the equal depth
strategy performs the best for all codelengths. Also note
that the approx equal depth and log strategies also per-
form similarly. Notably, the mse optimal strategy, which
was optimal when using the MSE distortion criteria, is no
longer the optimal choice – this result signifies the need
to consider appropriate notions of distortion when choosing
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Figure 8: The average distortion for the various
strategies when using the TDist distortion measure
(Equation 6) over the full lists of query results, for
86 test queries.

quantization strategies for search rankings.
In Section 4.2, we argued that for the TDist distortion

measure, for a retrieval model in which documents in the
corpus have different probabilities of appearing in the re-
sults, an equiprobable, rather than an equal-depth, parti-
tion is superior. As mentioned in Section 4.4, we noticed
a slight correlation between the PageRank and the prob-
ability of appearing in the raw candidate result set. To
test the performance of the equal prob strategy, we imple-
mented the compander described in Section 4.3, replacing
the pdf with f(x) = kx−2.0. On the subset of test queries
that were not used in estimating the power-law exponent,
we measured the performance, using the TDist distortion
measure, of this approximation to an equiprobable parti-
tion. The results are shown in Figure 9, and demonstrate
that the (approximate) equiprobable scheme improves upon
the (approximate) equal-depth scheme. However, the true
equal-depth scheme still performs the best by a small mar-
gin.

Figure 10 plots the average TDist distortion when the
query results are first pruned to include only the top 100
documents based on the pure cosine similarity to the search
query, then ranked using only the quantized PageRank value.
As expected, the results match the results of Figure 8; since
cosine similarity is uncorrelated with PageRank, the optimal
strategy is unchanged from that of Figure 8.

Our third query result scenario and distortion measure
are as follows. Let τ be the ordered list of the top 100
documents when query results are ranked by the composite
score cosQd · rd; let τq be the ordered list of the top 100
documents when query results are ranked by cosQd · q(rd)
for some quantizer q. Note that τ 6= τq because q(rd) is
less precise than rd. We measure distortion using the KDist
measure described in Section 2.2. As shown in Figure 11,
in this scenario, the log strategy performs the best for all
codelengths in minimizing the mean KDist distortion.

The previous results demonstrate the importance of using
a distortion measure suited to the ranking strategy used by
the search engine when choosing a quantization strategy.
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Figure 9: The approximate equiprobable partition
outperforms the approximate equal-depth partition
on the TDist distortion measure. Documents with
high PageRank had slightly higher probabilities of
being candidate results. The true equal-depth par-
tition strategy still has the least distortion.

5. VARIABLE-LENGTH ENCODING
SCHEMES

Fixed length encoding schemes are much simpler to sup-
port in the implementation of the ranking function, because
the attribute values are at easily computed offsets into the
attribute vector. Assuming consecutively assigned docu-
ment identifiers, and a fixed-length encoding using l bits per
codeword, the value for the attribute for document i is at bit
location i × l. Variable-length encodings have the potential
to reduce the average codeword lengths, and thus the over-
all storage requirement for the ranking vector. However, the
downside is a more complex decoding process, which is less
efficient and may not be practical, depending on the search
engine’s performance criteria. In particular, to retrieve the
attribute values when the ranking vector is encoded with a
variable-length scheme, a sparse index15 is needed to allow
the lookup of the block containing the desired value. Fur-
thermore, all the values in that block preceding the desired
value would also need to be decoded. For a large-scale search
engine supporting millions of users, this additional overhead
may not be affordable. In this section, we first explore the
effectiveness of variable-length schemes in minimizing stor-
age, and then investigate the additional runtime costs for
decoding variable-length codes.

5.1 Variable-Length Encoding Performance
To investigate the effectiveness of variable-length schemes,

we computed the average Huffman codelengths for the quan-
tization schemes previously discussed in Sections 3 and 4.
When the MSE distortion of Figure 5 is plotted against
the Huffman codelength, rather than the fixed codelength,
the uniform quantization strategy, linear, becomes the best
performer, as shown in Figure 12.16 The variable-length en-

15The index needs to be sparse, since otherwise any space
savings from a variable-length coding scheme would be lost.

16That uniform-width quantizers are near-optimal for
variable-length encoding is known for the MSE distortion
measure [3].
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Figure 10: The average distortion for the various
strategies when using the TDist distortion measure
over pruned lists of query results, for 86 test queries.
The pruned lists consisted of the top 100 results
based on the cosine similarity of the documents to
the query.

coding for the cells eliminates the inefficiencies of uniform
quantization. This effect carries over to the result-based
distortion measures as well, as shown in the replotting of
Figure 8, given as Figure 13. Note that the equal-depth ap-
proaches derive no benefit from Huffman coding – the aver-
age codelength is reduced precisely when the cell depths are
nonuniform. Note that the average codeword lengths shown
in these graphs does not include the memory required for the
additional indexes needed at runtime for efficient decoding;
we discuss decoding requirements in Section 5.2.

These empirical results indicate that if a variable-length
encoding scheme is used to generate codes for the cells, a
uniform quantizer performs similarly to the optimal quan-
tizer, under the distortion measures we used.

5.2 Variable-Length Encoding Costs
Variable-length encoders outperform fixed-length encoders,

when judged on the average codelength needed to achieve
a particular distortion, for most of the distortion measures
we have discussed. However, there is a substantial process-
ing overhead at query time to decode the numeric attribute
values. The driving motivation behind our work was to re-
duce the per-document attribute lookup cost by fitting the
ranking vectors in main memory; variable-length encodings
are only appropriate if fixed-length encodings are not suffi-
cient to allow the attribute vectors to be stored in memory.
We next discuss the offline and query-time costs of variable-
length schemes compared to fixed-length schemes.

During the offline step, compression of the input data val-
ues using variable-length schemes requires first generating
Huffman codes for the cells of the partition, and then gen-
erating a compressed version of the input by replacing each
input value with the Huffman codeword assigned to the cell
the value was mapped to. A fixed-length scheme does not
require generating a Huffman code — the intervals can be
assigned sequential l-bit ids. However, the cost of generating
a Huffman code is fairly low; using the implementation of [9],
we were able to generate the codebook and compress the in-
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Figure 11: The average distortion for the various
strategies when using the KDist distortion measure
over pruned lists of query results, for 86 test queries.
The pruned lists consisted of the top 100 results
ranked by the score cosQd · rd.

put data (360M values, 1.34GB) in under 10 minutes using
an AMD Athlon 1533MHz machine with a 6-way RAID-5
volume. Given the minimal impact of small variations in
preprocessing cost, we did not explore further the offline
overhead for variable-length encoding schemes.

The impact of additional query-time costs, however, is
more significant. For both the fixed-length and variable-
length scenarios, the query engine loads the entire sequence
of quantized values into memory as a string b of bits. We
assume that documents are identified by consecutively as-
signed document identifiers, so that the document with ID
i is the ith value inserted into the bit string. In the case
of a fixed-length scheme with codewords of length l, the at-
tribute value associated with some document i is simply the
value of the bit substring b[i× l, (i+1)× l−1]. The only cost
is a memory lookup; in the case where l is not the length
of standard integer data type (e.g., 8, 16, or 32), a few bit
shifts are also required.

When using a variable-length code, however, for a given
document i, finding the exact location for its attribute value
in the bit string becomes nontrivial. Decoding from the be-
ginning of the string until finding the ith value is of course
inefficient, making an index necessary. More specifically,
since maintaining the exact offset into the bitstring for each
value would completely negate the benefit of compression,
we must use a sparse index which maintains offsets to blocks
of values. Decoding the attribute value for document i re-
quires decoding all the values from the beginning of the
block up through the desired value. Thus, the decoding
time is proportional the block size B; more precisely, the
expected number of decodes is B/2. Using small blocks re-
duces the decoding time, but in turn increases the space
usage of the sparse index. Figure 14 shows the decode time,
in µs/document vs. block size, for 4 variable-length schemes.
For comparison, the decode time for a fixed-length encod-
ing scheme is also given. These times were measured on an
AMD Athlon 1533MHz machine with 2GB of main memory.
The additional space overhead, in bits/codeword, needed by
the sparse index for 360M values for various block sizes is
plotted in Figure 15.
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Figure 12: The MSE of 6 different strategies, plot-
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For comparison, the optimal fixed-length performer
is also shown; the simple linear quantizer, using
variable-length codes, performs better than the op-
timal fixed-length strategy.

The times may seem very small, making the variable-
length schemes seem attractive; however, for a large-scale
search engine, with thousands of concurrent active queries,
where each query has thousands of candidate results requir-
ing attribute value decodings for tens of attributes, the per-
result decode time needs to be as inexpensive as possible.
As an illustrative example, consider a search engine with 1
billion pages with a query workload of 10 queries/s. As-
sume that each document has a single numeric property
(e.g., PageRank) that needs to be decoded for calculating
final rankings. Also assume that the average query yields
.01% of the repository as candidate results, so that the pro-
cessing for each query requires retrieving the numeric prop-
erties for 100,000 documents. If a variable-length scheme is
used, so that the decode time for a single attribute value
for a single document requires 35 µs, decoding alone will
require 3.5 seconds of CPU time per query, or equivalently,
35 machines are needed to handle the query workload (if
decoding were the only cost in the system). If the decode
time for is instead 1 µs per document (e.g., utilizing a fixed-
length encoding scheme), only 0.1s is spent decoding for
each query; equivalently, a single machine can handle the
query workload. Of course there are other significant costs
in the system in addition to attribute value decode time;
discussing them in detail is beyond the scope of this paper.
Our goal in this example is simply to provide some intuition
as to why per-document decode times need to be kept very
small for large-scale search engines.

6. RELATED WORK
There has been much work in the field of compression in

the context of large-scale Web search. An excellent overview
of text-index compression techniques can be found in [19].
Suel and Yuan [18] investigate strategies for compressing the
Web hyperlink graph. Raghavan and Garcia-Molina [16]
explore techniques for compressing the Web link graph in
ways that allow for efficient query processing.
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Figure 13: The average distortion for the variable
length strategies when using the TDist distortion
measure over the full lists of query results, for 86
test queries. The x-axis represents the average code-
word lengths using a Huffman code.

Our work explores the development of lossy encodings for
auxiliary numeric ranking vectors, where the quality of an
encoding is judged by its effect on the final rankings in-
duced over query results. An approach for efficiently encod-
ing the document-length vector, needed for cosine compu-
tations, was studied in [10]. However, that work did not
consider variable-length encodings, and did not provide an-
alytic results for the behavior of the encodings under various
models for query result distributions. The use of measures
based on Kendall’s-τ rank correlation for comparing docu-
ment rankings has recently become popular [1, 6], and is
given a thorough treatment by Fagin et al. in [2].
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APPENDIX

A. OPTIMAL QUANTIZER: DERIVATION
USING THE MULTIVARIATE HYPER-
GEOMETRIC DISTRIBUTION

The derivation of the optimal quantizer under the dis-
tortion measure given in Equation 5, when the operation
Retrieve is modeled as a uniform random sample, with-
out replacement, is very similar to the derivation given in
Section 4.2. As before, we want to minimize Equation 6,
although each Xi now follows the hypergeometric, rather
than the binomial, distribution. Using the known mean and
variance for the hypergeometric distribution [4], with pa-
rameters N , Ni, and m, and letting pi = Ni

N
, we compute

E[X2

i ] as before:

E[Xi] = mpi (20)

var[Xi] ≡ E[X2

i ] − E[Xi]
2 (21)

var[Xi] = mpi(1 − pi)
N − m

N − 1
(22)

E[X2

i ] = mpi(1 − pi)
N − m

N − 1
+ (mpi)

2 (23)

Plugging E[X2

i ] back into Equation 6 and simplifying, we
get

E[Distortionm] =
1

m2

�
E[X2

i ] (24)

=
1

m2

�

i

�
mpi(1 − pi)

N − m

N − 1
+ (mpi)

2 �
(25)

=
1

m2

�

i

� N − m

N − 1
(mpi − mp2

i ) + m2p2

i �
(26)

=
N − m

m(N − 1)

�

i

pi +
�
1 −

N − m

m(N − 1) �
�

i

p2

i

(27)

=
N − m

m(N − 1)
+

�
1 −

N − m

m(N − 1) �
�

i

p2

i

(28)

Given values for N and m, the above is equivalent to min-
imizing � i p2

i subject to the constraint � i pi = 1, leading
to the solution given by Equation 16, i.e., an equal-depth
partitioning scheme.
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