
Exploiting the Block Structure of the Web for Computing
PageRank

Sepandar D. Kamvar Taher H. Haveliwala Christopher D. Manning Gene H. Golub

Stanford University
{sdkamvar,taherh,manning,golub}@cs.stanford.edu

Abstract

The web link graph has a nested block struc-
ture: the vast majority of hyperlinks link pages
on a host to other pages on the same host, and
many of those that do not link pages within the
same domain. We show how to exploit this struc-
ture to speed up the computation of PageRank by
a 3-stage algorithm whereby (1) the local Page-
Ranks of pages for each host are computed in-
dependently using the link structure of that host,
(2) these local PageRanks are then weighted by
the “importance” of the corresponding host, and
(3) the standard PageRank algorithm is then run
using as its starting vector the weighted concate-
nation of the local PageRanks. Empirically, this
algorithm speeds up the computation of PageRank
by a factor of 2 in realistic scenarios. Further,
we develop a variant of this algorithm that effi-
ciently computes many different “personalized”
PageRanks, and a variant that efficiently recom-
putes PageRank after node updates.

1 Introduction

The rapidly growing web graph contains several billion
nodes, making graph-based computations very expensive.
One of the best known web-graph computations is Page-
Rank, an algorithm for determining the “importance” of
Web pages [14]. The core of the PageRank algorithm in-
volves repeatedly iterating over the web graph structure un-
til a stable assignment of page-importance estimates is ob-
tained. As this computation can take several days on web
graphs of several billion nodes, the development of tech-
niques for reducing the computational costs of the algo-
rithm becomes necessary for two reasons. Firstly, speed-
ing up this computation is part of the general efficien-
cies needed for improving the freshness of a web index.
Secondly, recent approaches to personalized and topic-
sensitive PageRank schemes [8, 10, 16] require comput-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage. Copyright is held by the authors. Copyright (C) 2003.

ing many PageRank vectors, intensifying the need for faster
methods for computing PageRank.

Previous approaches to accelerating the PageRank com-
putation exploit general sparse graph techniques. Arasu et
al. [1] use values from the current iteration as they become
available, rather than using only values from the previous
iteration. They also suggest that exploiting the “bow-tie”
structure of the web [3] would be useful in computing Page-
Rank. However, the method they suggest is not practical,
as ordering the web matrix according to this structure re-
quires depth-first search, which is prohibitively costly on
the web. More recently, Kamvar et al. [11] suggest using
successive intermediate iterates to extrapolate successively
better estimates of the true PageRank values. However, the
speedups from the latter work are modest for the parameter
settings typically used for PageRank.1

This paper proposes exploiting the detailed typology of
the web graph. Analysis of the graph structure of the web
has concentrated on determining various properties of the
graph, such as degree distributions and connectivity statis-
tics, and on modeling the creation of the web graph [12, 2].
However, this research has not directly addressed how this
inherent structure can be exploited effectively to speed
up link analysis. Raghavan and Garcia-Molina [15] have
exploited the hostname (or more generally, url)-induced
structure of the web to represent the web graph efficiently.
In this paper, we directly exploit this kind of structure to
achieve large speedups compared with previous algorithms
for computing PageRank by

• Substantially improving locality of reference, thereby
reducing disk i/o costs and memory access costs,

• Reducing the computational complexity (i.e., number of
FLOPS).

• Allowing for highly parallelizable computations requir-
ing little communication overhead,

• Allowing reuse of previous computations when updat-
ing PageRank and when computing multiple “personal-
ized” PageRank vectors.

1In particular, the speedup is modest for the typically citeddamping
factor ofc = 0.85 (which gives a fast-mixing graph).

Term Example:cs.stanford.edu/research/
top level domain edu
domain stanford.edu
hostname cs
host cs.stanford.edu
path /research/

Table 1: Example illustrating our terminology using the sample
url http://cs.stanford.edu/research/.

2 Experimental Setup

In the following sections, we investigate the structure of the
web, introducing an algorithm for computing PageRank,
and discuss the speedup this algorithm achieves on realistic
datasets. Our experimental setup is as follows.

We used two datasets of different sizes for our experi-
ments. The STANFORD/BERKELEY link graph was gener-
ated from a crawl of thestanford.edu andberkeley.edu do-
mains created in December 2002 by the Stanford WebBase
project. This link graph (after dangling node removal, dis-
cussed below) contains roughly 683,500 nodes, with 7.6
million links, and requires 25MB of storage. We used
STANFORD/BERKELEY while developing the algorithms,
to get a sense for their performance. For real-world perfor-
mance measurements, we use the LARGEWEB link graph,
generated from a crawl of the Web that had been created
by the Stanford WebBase project in January 2001 [9]. The
full version of this graph, termed FULL -LARGEWEB, con-
tains roughly 290M nodes, just over a billion edges, and
requires 6GB of storage. Many of these nodes are dangling
nodes (pages with no outlinks), either because the pages
genuinely have no outlinks, or because they are pages that
have been discovered but not crawled. In computing Page-
Rank, these nodes are excluded from the web graph until
the final few iterations, so we also consider the version of
LARGEWEB with dangling nodes removed, termed DNR-
LARGEWEB, which contains roughly 70M nodes, with
over 600M edges, and requires 3.6GB of storage. The link
graphs are stored using an adjacency list representation,
with pages represented as 4-byte integer identifiers. On
an AMD Athlon 1533MHz machine with a 6-way RAID-
5 disk volume and 3.5GB of main memory, each iteration
of PageRank on the 70M page DNR-LARGEWEB dataset
takes roughly 7 minutes. Given that computing PageRank
generally requires up to 100 iterations, the need for fast
computational methods for larger graphs with billions of
nodes is clear.

Our criterion for determining the convergence of the al-
gorithms that follow uses theL1 norm of the residual vec-
tor; i.e.,||A~x(k) − ~x(k)||1. We refer the reader to [11] for a
discussion of why theL1 residual is an appropriate measure
for measuring convergence.

3 Block Structure of the Web

The key terminology we use in the remaining discussion is
given in Table 1.

To investigate the structure of the web, we run the fol-

Domain Host
Full Intra 953M links 83.9% 899M links 79.1%

Inter 183M links 16.1% 237M links 20.9%
DNR Intra 578M links 95.2% 568M links 93.6%

Inter 29M links 4.8% 39M links 6.4%

Table 2: Hyperlink statistics on LARGEWEB for the full graph
(Full: 291M nodes, 1.137B links) and for the graph with dangling
nodes removed (DNR: 64.7M nodes, 607M links).

lowing simple experiment. We take all the hyperlinks in
FULL -LARGEWEB, and count how many of these links are
“intra-host” links (links from a page to another page in the
same host) and how many are “inter-host” links (links from
a page to a page in a different host). Table 2 shows that
79.1% of the links in this dataset are intra-host links, and
20.9% are inter-host links. These intra-host connectivity
statistics are not far from the earlier results of Bharat et
al. [2]. We also investigate the number of links that are
intra-domain links, and the number of links that are inter-
domain links. Notice in Table 2 that an even larger majority
of links are intra-domain links (83.9%).

These results make sense intuitively. Take as an ex-
ample the domaincs.stanford.edu. Most of the links
in cs.stanford.edu are links around thecs.stanford.edu
site (such ascs.stanford.edu/admissions, or cs.stanford.edu
/research). Furthermore, almost all non-navigational links
are links to other Stanford hosts, such aswww.stanford.edu,
library.stanford.edu, or www-cs-students.stanford.edu.

One might expect that there exists this structure even
in lower levels of the web hierarchy. For example, one
might expect that pages undercs.stanford.edu/admissions/
are highly interconnected, and very loosely connected with
pages in other sublevels, leading to a nested block struc-
ture. This type of nested block structure can be nat-
urally exposed by sorting the link graph to construct a
link matrix in the following way. We sort urls lex-
icographically, except that as the sort key, we reverse
the components of the domain. For instance, the sort
key for the urlwww.stanford.edu/home/students/ would be
edu.stanford.www/home/students. The urls are then assigned
sequential identifiers when constructing the link matrix. A
link matrix contains as its(i, j)th entry a 1 if there is a link
from i to j, and 0 otherwise. This has the desired property
that urls are grouped in turn by top level domain, domain,
hostname, and finally path. The subgraph for pages instan-
ford.edu appear as a sub-block of the full link matrix. In
turn, the subgraph for pages inwww-db.stanford.edu appear
as a nested sub-block.

We can then gain insight into the structure of the web
by using dotplots to visualize the link matrix. In a dotplot,
if there exists a link from pagei to pagej then point(i, j)
is colored; otherwise, point(i, j) is white. Since our full
datasets are too large to see individual pixels, we show sev-
eral slices of the web in Figure 1. Notice three things:

1. There is a definite block structure to the web.

2. The individual blocks are much smaller than entire web.

3. There are clear nested blocks corresponding to domains,

(a) IBM (b) Stanford/Berkeley

0 100 200 300 400

0

50

100

150

200

250

300

350

400

450

nz = 6375

(c) Stanford-50 (d) Stanford/Berkeley Host Graph

Figure 1: A view of 4 different slices of the web: (a) the IBM domain, (b) all of the hosts in the Stanford and Berkeley domains, (c) the
first 50 Stanford domains, alphabetically, and (d) the host-graph of the Stanford and Berkeley domains.

hosts, and subdirectories within the path.

Figure 1(a) shows the dotplot for theibm.com domain.
Notice that there are clear blocks, which correspond to
different hosts withinibm.com; for example, the upper
left block corresponds to thealmaden.ibm.com hosts (the
hosts for IBM’s Almaden Research Center). Notice that
the pages at the very end of the plot (pagesi ≥ 18544)
are heavily inlinked (the vertical line at the lower right
hand corner of the plot. These are the pages within the
www.ibm.com host, and it is expected that they be heavily
inlinked. Also notice that there are 4 patterns that look
like the upside-down letter “L”. These are sites that have
a shallow hierarchy; the root node links to most pages in
the host (horizontal line), and is linked to by most pages in
the host (vertical line), but there is not much interlinkage
within the site itself (empty block). Finally, notice that the
area around the diagonal is very dense; this corresponds to
strong intrablock linkage, especially in the smaller blocks.

Figure 1(b) shows the dotplot for STANFORD/
BERKELEY. Notice that this also has a strong block struc-
ture and a dense diagonal. Furthermore, this plot makes
clear the nested block structure of the web. The superblock
on the upper left hand side is thestanford.edu domain, and

the superblock on the lower right hand side is theberke-
ley.edu domain.

Figure 1(c) shows a closeup of the first 50 hosts al-
phabetically within thestanford.edu domain. The major-
ity of this dotplot is composed of 3 hosts that are large:
acomp.stanford.edu, the academic computing site at Stan-
ford, in the upper left hand corner;cmgm.stanford.edu,
an online bioinformatics resource, in the middle, and
daily.stanford.edu, the web site for theStanford Daily
(Stanford’s student newspaper) in the lower right hand
corner. There are many interesting structural motifs
in this plot. First there is a long vertical line in the
upper left-hand corner. This feature corresponds to
the web sitehttp://acomp.stanford.edu; most pages in the
acomp.stanford.edu host point to this root node. Also, there
is a clear nested block structure withinacomp.stanford.edu
on the level of different directories in the url hierarchy.

In the Stanford Daily site, we see diagonal lines, long
vertical blocks, a main center block, and short thin blocks.
The first several web pages indaily.stanford.edu represent
the front page of the paper for the past several days. Each
front page links to the front page of the day before, and
therefore there is a small diagonal line in the upper left

hand corner of theStanford Daily block. The diagonals
are due to the url naming convention of theStanford Daily
which causes the lexicographic ordering of urls to induce a
chronological ordering of the articles. The front pages link
to articles, which are the middle pages of the block. There-
fore, we see a horizontal strip in the top middle. These
articles also link back to the front pages, and so we see a
vertical strip on the middle left hand side. The articles link
to each other, since each article links to related articles and
articles by the same author. This accounts for the square
block in the center. The long vertical strips represent pages
that are on the standard menu on each page of the site (some
pages on this menu are the “subscriptions” page, the “write
a letter to the editor” page, and the “advertising” page). Fi-
nally, the diagonal lines that surround the middle block are
pages such as “e-mail this article to a friend” or “comment
on this article”, that are linked to only one article each.

Figure 1(d) shows the host graph for thestanford.edu and
berkeley.edu domains, in which each host is treated as a sin-
gle node, and an edge is placed between hosti and hostj if
there is a link between any page in hosti and hostj. Again,
we see strong block structure on the domain level, and the
dense diagonal shows strong block structure on the host
level as well. The vertical and horizontal lines near the bot-
tom right hand edge of both the Stanford and Berkeley do-
mains represent thewww.stanford.edu andwww.berkeley.edu
hosts, showing that these hosts are, as expected, strongly
linked to most other hosts within their own domain.

3.1 Block Sizes

We investigate here the sizes of the hosts in the web. Fig-
ure 2(a) shows the distribution over number of (crawled)
pages of the hosts in LARGEWEB. Notice that the major-
ity of sites are small, on the order of100 pages. Figure 2(b)
shows the sizes of the host blocks in the web when dangling
nodes are removed. When dangling nodes are removed, the
blocks become smaller, and the distribution is still skewed
towards small blocks. The largest block had 6,000 pages.
In future sections we see how to exploit the small sizes of
the blocks, relative to the dataset as a whole, to speedup up
link analysis.

3.2 The GeoCities Effect

While one would expect that most domains have high intra-
cluster link density, as incs.stanford.edu, there are some
domains that one would expect to have low intracluster
link density, for examplepages.yahoo.com (formerly
www.geocities.com). The web sitehttp://pages.yahoo.com
is the root page for Yahoo! GeoCities, a free web host-
ing service. There is no reason to think that people who
have web sites on GeoCities would prefer to link to one
another rather than to sites not in GeoCities.2 Figure 3
shows a histogram of the intradomain densities of the web.
In Figure 3(a) there is a spike near 0% intrahost linkage,

2There may of course be deeper structure found in the path component,
although we currently do not directly exploit such structure.

showing that many hosts are not very interconnected. How-
ever, when we remove the hosts that have only 1 page (Fig-
ure 3(b)), this spike is substantially dampened, and when
we exclude hosts with fewer than 5 pages, the spike is elim-
inated. This shows that the hosts in LARGEWEB that are
not highly intraconnected are very small in size. When the
very small hosts are removed, the great majority of hosts
have high intra-host densities, and very few hosts suffer
from the GeoCities effect.

4 BlockRank Algorithm

We now present the BlockRank algorithm that exploits the
empirical findings of the previous section to speed up the
computation of PageRank. This work is motivated by and
builds on aggregation/disaggregation techniques [5, 17]
and domain decomposition techniques [6] in numerical lin-
ear algebra. Steps 2 and 3 of the BlockRank algorithm are
similar to the Rayleigh-Ritz refinement technique [13]. We
begin with a review of PageRank in Section 4.1.

4.1 Preliminaries

In this section we summarize the definition of PageRank
[14] and review some of the mathematical tools we will use
in analyzing and improving the standard iterative algorithm
for computing PageRank.

Underlying the definition of PageRank is the following
basic assumption. A link from a pageu ∈ Web to a page
v ∈ Web can be viewed as evidence thatv is an “impor-
tant” page. In particular, the amount of importance con-
ferred onv by u is proportional to the importance ofu and
inversely proportional to the number of pagesu points to.
Since the importance ofu is itself not known, determining
the importance for every pagei ∈ Web requires an iterative
fixed-point computation.

To allow for a more rigorous analysis of the necessary
computation, we next describe an equivalent formulation
in terms of a random walk on the directed Web graphG.
Let u → v denote the existence of an edge fromu to v
in G. Let deg(u) be the outdegree of pageu in G. Con-
sider a random surfer visiting pageu at timek. In the next
time step, the surfer chooses a nodevi from amongu’s out-
neighbors{v|u → v} uniformly at random. In other words,
at timek+1, the surfer lands at nodevi ∈ {v|u → v} with
probability1/ deg(u).

The PageRank of a pagei is defined as the probabil-
ity that at some particular time stepk > K, the surfer is
at pagei. For sufficiently largeK, and with minor mod-
ifications to the random walk, this probability is unique,
illustrated as follows. Consider the Markov chain induced
by the random walk onG, where the states are given by
the nodes inG, and the stochastic transition matrix de-
scribing the transition fromi to j is given by P with
Pij = 1/ deg(i).

For P to be a valid transition probability matrix, every
node must have at least 1 outgoing transition; e.g.,P should
have no rows consisting of all zeros. This property holds

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(a) FULL -LARGEWEB (b) DNR-LARGEWEB

Figure 2: Histogram of distribution over host sizes of the web. Thex-axis gives bucket sizes for the log10 of the size of the host-blocks,
and they-axis gives the fraction of host-blocks that are that size.

−20 0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

−20 0 20 40 60 80 100 120
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

−20 0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

(a) All hosts (b) Hosts with 1 page excluded (c) Hosts with< 5 pages excluded

Figure 3: Distribution over interconnectivity of host blocks for the DNR-LARGEWEB data set. Thex-axis of each figure shows
percentile buckets for intra-host linkage density (the percent of edges originating or terminating in a given host thatare intra-host links),
and they-axis shows the fraction of hosts that have that linkage density. Figure 3(a) shows the distribution of intra-host linkage density
for all hosts; 3(b) shows it for all hosts that have more than 1page; and 3(c) shows it for all hosts that have 5 or more pages.

if G does not have any pages with outdegree0, which does
not hold for the Web graph.P can be converted into a
valid transition matrix by adding a complete set of outgo-
ing transitions to pages with outdegree0. In other words,
we can define the new matrixP ′ where all states have at
least one outgoing transition in the following way. Letn be
the number of nodes (pages) in the Web graph. Let~v be
the n-dimensional column vector representing a uniform
probability distribution over all nodes:

~v = [
1

n
]n×1 (1)

Let ~d be then-dimensional column vector identifying the
nodes with outdegree0:

di =

{

1 if deg(i) = 0,

0 otherwise

Then we constructP ′ as follows:

D = ~d · ~v T

P ′ = P + D

In terms of the random walk, the effect ofD is to modify
the transition probabilities so that a surfer visiting a dan-
gling page (i.e., a page with no outlinks) randomly jumps
to a page in the next time step, using the distribution given
by ~v.

By the Ergodic Theorem for Markov chains [7], the
Markov chain defined byP ′ has a unique stationary proba-
bility distribution if P ′ is aperiodic and irreducible; the for-
mer holds for the Markov chain induced by the Web graph.
The latter holds iffG is strongly connected, which is gener-
ally not the case for the Web graph. In the context of com-
puting PageRank, the standard way of ensuring this prop-
erty is to add a new set of complete outgoing transitions,
with small transition probabilities, toall nodes, creating a
complete (and thus strongly connected) transition graph. In
matrix notation, we construct the irreducible Markov ma-
trix P ′′ as follows:

E = [1]n×1 × ~v T

P ′′ = cP ′ + (1 − c)E

In terms of the random walk, the effect ofE is as follows.
At each time step, with probability(1 − c), a surfer visit-
ing any node will jump to a random Web page (rather than
following an outlink). The destination of the random jump
is chosen according to the probability distribution given in
~v. Artificial jumps taken because ofE are referred to as
teleportation. In [14], the value ofc was taken to be 0.85,
and we use this value in all experiments in this work.

By redefining the vector~v given in Equation 1 to be
nonuniform, so thatD andE add artificial transitions with
nonuniform probabilities, the resultant PageRank vector

~y = cPT ~x;
w = ||~x||1 − ||~y||1;
~y = ~y + w~v;

Algorithm 1: Computing~y = A~x

functionpageRank(G, ~x(0), ~v) {
ConstructP from G: Pji = 1/ deg(j);
repeat

~x(k+1) = cPT ~x(k);
w = ||~x(k)||1 − ||~x(k+1)||1;
~x(k+1) = ~x(k+1) + w~v;
δ = ||~x(k+1) − ~xk||1;

until δ < ε;
return ~x(k+1);
}

Algorithm 2: PageRank

can be biased to prefer certain kinds of pages. For this rea-
son, we refer to~v as thepersonalization vector.

For simplicity and consistency with prior work, the re-
mainder of the discussion will be in terms of the transpose
matrix, A = (P ′′)T ; i.e., the transition probability distri-
bution for a surfer at nodei is given by rowi of P ′′, and
columni of A.

Note that the edges artificially introduced byD andE
never need to be explicitly materialized, so this construc-
tion has no impact on efficiency or the sparsity of the ma-
trices used in the computations. In particular, the matrix-
vector multiplication~y = A~x can be implemented effi-
ciently using Algorithm 1.

Assuming that the probability distribution over the
surfer’s location at time0 is given by~x(0), the probability
distribution for the surfer’s location at timek is given by
~x(k) = Ak~x(0). The unique stationary distribution of the
Markov chain is defined aslimk→∞ x(k), which is equiv-
alent tolimk→∞ Akx(0), and is independent of the initial
distribution~x(0). This stationary distribution is simply the
principal eigenvector of the matrixA = (P ′′)T , which is
the PageRank vector we would like to compute.

The standard PageRank algorithm computes the princi-
pal eigenvector by starting with the uniform distribution
~x(0) = ~v and computing successive iterates~x(k+1) =
A~x(k) until convergence (i.e., it uses thepower method).
This algorithm is summarized in Algorithm 2. While many
algorithms have been developed for fast eigenvector com-
putations, many of them are unsuitable for this problem be-
cause of the size and sparsity of the Web matrix (see [11]
for discussion).

4.2 Overview of BlockRank Algorithm

The block structure of the web suggests a fast algorithm for
computing PageRank, wherein a “local PageRank vector”
is computed for each host, giving the relative importance of
pages within a host. These local PageRank vectors can then
be used to form an approximation to the global PageRank
vector that is used as a starting vector for the standard Page-

Rank computation. This is the basic idea behind the Block-
Rank algorithm, which we summarize here and describe in
this section. The algorithm proceeds as follows:

0. Split the web into blocks by domain.

1. Compute the Local PageRanks for each block (Sec-
tion 4.3).

2. Estimate the relative importance, or “BlockRank” of
each block (Section 4.4).

3. Weight the Local PageRanks in each block by the Block-
Rank of that block, and concatenate the weighted Local
PageRanks to form an approximate Global PageRank
vector~z (Section 4.5).

4. Use~z as a starting vector for standard PageRank (Sec-
tion 4.6).

We describe the steps in detail below, and we introduce
some notation here. We will use lower-case indices (i.e.
i, j) to represent indices of individual web sites, and up-
per case indices (i.e.I, J) to represent indices of blocks.
We use the shorthand notationi ∈ I to denote that
pagei ∈ block I. The number of elements in blockJ is
denotednJ . The graph of a given blockJ is given by the
nJ × nJ submatrixGJJ of the matrixG.

4.3 Computing Local PageRanks

In this section, we describe computing a “local PageRank
vector” for each block in the web. Since most blocks have
very few links in and out of the block as compared to the
number of links within the block, it seems plausible that
the relative rankings of most of the pages within a block
are determined by the inter-block links.

We define thelocal PageRank vector ~lJ of a blockJ
(GJJ) to be the result of the PageRank algorithm applied
only on blockJ , as if blockJ represented the entire web,
and as if the links to pages in other blocks did not exist.

That is:

~lJ = pageRank(GJJ , ~sJ , ~vJ)

where the start vector~sJ is thenJ × 1 uniform probability
vector over pages in blockJ ([1

nJ
]n×1), and the personal-

ization vector~vJ is thenJ × 1 vector whose elements are
all zero except the element corresponding to the root node
of blockJ , whose value is 1.

4.3.1 Local PageRank accuracies

To investigate how well these local PageRank vectors ap-
proximate the relative magnitudes of the true PageRank
vectors within a given host, we run the following exper-
iment. We compute the local PageRank vectors~lJ of
each host in STANFORD/BERKELEY. We also compute the
global PageRank vector~x for STANFORD/BERKELEY us-
ing the standard PageRank algorithm whose personaliza-
tion vector~v is a uniform distribution over root nodes. We
then compare the local PageRank scores of the pages within
a given host to the global PageRank scores of the pages in
the same host.

Approximation Error Measure Average Value
~lJ ||~lJ − ~gJ ||1 0.2383

KDist(~lJ , ~gJ) 0.0571

~vJ ||~vJ − ~gJ ||1 1.2804
KDist(~vJ , ~gJ) 0.8369

Table 3: The “closeness” as measured by average (a) absolute
error, and (b)KDist distance of the local PageRank vectors~lJ
and the global PageRank segments~gJ , compared to the closeness
between uniform vectors~vJ to the global PageRank segments~gJ

for the STANFORD/BERKELEY dataset.

Specifically, we take the elements corresponding to the
pages in hostJ of the global PageRank vector~x, and form
the vector~gJ from these elements. We normalize~gJ so
that its elements sum to 1 in order to compare it to the lo-
cal PageRank vector~lJ , which also has anL1 norm of 1.
Specifically,

~gJ = ~x(j ∈ J)/||~x(j ∈ J)||1

We call these vectors~gJ normalized global PageRank seg-
ments, or simplyglobal PageRank segments for short.

The results are summarized in Table 3. The absolute er-
ror ||~lJ −~gJ ||1 is on average 0.2383 for the hosts in STAN-
FORD/BERKELEY.

We compare the error of the local PageRank vectors~lj
to the error of a uniform~vJ = [1

nJ
]n×1 vector for each

hostJ . The error||~vJ − ~gJ ||1 is on average 1.2804 for the
hosts in STANFORD/BERKELEY. One can see that the local
PageRank vectors are much closer to the global PageRank
segments than the uniform vectors are. So a concatenation
of the local PageRank vectors may form a better start vec-
tor for the standard PageRank iteration than the uniform
vector.

The relative ordering of pageswithin a host induced
by local PageRank scores is generally close to the intra-
host ordering induced by the global PageRank scores. To
compare the orderings, we measure the average “distance”
betwen the local PageRank vectors~lJ and global Page-
Rank segments~gJ . The KDist distance measure, based
on Kendall’s-τ rank correlation and used for comparing in-
duced rank orders, is defined as follows:

Consider two partially ordered lists of URLs,τ1 andτ2,
each of lengthm. Let U be the union of the URLs inτ1

and τ2. If δ1 is U − τ1, then letτ ′

1 be the extension of
τ1, whereτ ′

1 containsδ1 appearing after all the URLs in
τ1.3 We extendτ2 analogously to yieldτ ′

2. KDist is then
defined as:

KDist(τ1, τ2) =

|{(u, v) : τ ′

1, τ
′

2 disagree on order of(u, v), u 6= v}|

(|U |)(|U | − 1)

In other words,KDist(τ1, τ2) is the probability thatτ ′

1 and
τ ′

2 disagree on the relative ordering of a randomly selected
pair of distinct nodes(u, v) ∈ U × U . In the current work,

3The URLs inδ are placed with thesame ordinal rank at the end ofτ .

Web Page Local Global
http://aa.stanford.edu 0.2196 0.4137
http://aa.stanford.edu/aeroastro/AAfolks.html 0.0910 0.0730
http://aa.stanford.edu/aeroastro/AssistantsAero.html 0.0105 0.0048
http://aa.stanford.edu/aeroastro/EngineerAero.html 0.0081 0.0044
http://aa.stanford.edu/aeroastro/Faculty.html 0.0459 0.0491
http://aa.stanford.edu/aeroastro/FellowsAero.html 0.0081 0.0044
http://aa.stanford.edu/aeroastro/GraduateGuide.html 0.1244 0.0875
http://aa.stanford.edu/aeroastro/Labs.html 0.0387 0.0454
http://aa.stanford.edu/aeroastro/Links.html 0.0926 0.0749
http://aa.stanford.edu/aeroastro/MSAero.html 0.0081 0.0044
http://aa.stanford.edu/aeroastro/News.html 0.0939 0.0744
http://aa.stanford.edu/aeroastro/PhdAero.html 0.0081 0.0044
http://aa.stanford.edu/aeroastro/aacourseinfo.html 0.0111 0.0039
http://aa.stanford.edu/aeroastro/aafaculty.html 0.0524 0.0275
http://aa.stanford.edu/aeroastro/aalabs.html 0.0524 0.0278
http://aa.stanford.edu/aeroastro/admitinfo.html 0.0110 0.0057
http://aa.stanford.edu/aeroastro/courseinfo.html 0.0812 0.0713
http://aa.stanford.edu/aeroastro/draftcourses.html 0.0012 0.0003
http://aa.stanford.edu/aeroastro/labs.html 0.0081 0.0044
http://aa.stanford.edu/aeroastro/prospective.html 0.0100 0.0063
http://aa.stanford.edu/aeroastro/resources.html 0.0112 0.0058
http://aa.stanford.edu/aeroastro/visitday.html 0.0123 0.0068

Table 4: The local PageRank vector~lJ for the domain
aa.stanford.edu (left) compared to the global PageRank segment
~gJ corresponding to the same pages. The local PageRank vector
has a similar ordering to the normalized components of the global
PageRank vector. The discrepancy in actual ranks is largelydue
to the fact that the local PageRank vector does not give enough
weight to the root nodehttp://aa.stanford.edu.

we only compare lists containing the same sets of elements,
so thatKDist is identical to Kendall’sτ distance.

The average distanceKDist(~lJ , ~gJ) is 0.0571 for the
hosts in STANFORD/BERKELEY. Notice that this distance
is low. This observation means that the ordering induced by
the local PageRank is close to being correct, and thus sug-
gests that the majority of theL1 error in the comparison of
local and global PageRanks comes from the miscalibration
of a few pages on each host. Indeed the miscalibration may
be among important pages; as we discuss next, this miscal-
ibration is corrected by the final step of our algorithm. Fur-
thermore, the relative rankings of pages ondifferent hosts is
unkown at this point. For these reasons, we do not suggest
using local PageRank for ranking pages; we use it only as
a tool for computing theglobal PageRank more efficiently.

Table 4 confirms this observation for the host
aa.stanford.edu. Notice that the ordering is preserved, and a
large part of the discrepancy is due tohttp://aa.stanford.edu.
The local PageRank computation gives too little weight to
the root node. Since the elements of the local vector sum
to 1, the ranks of all of the other pages are upweighted.

It should be noted that errors of this pattern (where the
majority of L1 error comes from the miscalibration of a
few pages) are fixed easily, since once these miscalibrated
pages are fixed (by, for example, a few iterations of global
PageRank), the rest of the pages fall into place. Errors that
are more random take longer to fix. We observe this empir-
ically, but do not include these experiments here for space
considerations.

This suggests a stopping criteria for local PageRank
computations. At each stage in a local PageRank com-
putation, one could compute the Kendall’s-τ residual (the
Kendall’s-τ distance between the current iteration~l

(k)
J and

the previous iteration~l (k−1)
J). When the Kendall’s-τ resid-

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 4: Local PageRank convergence rates for hosts in DNR-
LARGEWEB. The x-axis is the number of iterations until con-
vergence to a tolerance of10

−1, and they-axis is the fraction of
hosts that converge in a given number of iterations.

ual is 0, that means the ordering is correct, and the local
PageRank computation can be stopped.

4.3.2 Local PageRank Convergence Rates

Another interesting question to investigate is how quickly
the local PageRank scores converge. In Figure 4, we show
a histogram of the number of iterations it takes for the lo-
cal PageRank scores for each host in DNR-LARGEWEB to
converge to anL1 residual< 10−1. Notice that most hosts
converge to this residual in less than 12 iterations.

Interestingly, there is no correlation between the con-
vergence rate of a host and the host’s size. Rather, the con-
vergence rate is primarily dependent on the extent of the
nested block structure within the host. That is, hosts with
strong nested blocks are likely to converge slowly, since
they represent slow-mixing Markov chains. Hosts with a
more random connection pattern converge faster, since they
represent a fast-mixing Markov chain.

This observation suggests that one could make the local
PageRank computations even faster by wisely choosing the
blocks. That is, if a host has a strong nested block struc-
ture, use the directories within that host as your blocks.
However, this is not a crucial issue, because we show in
Section 5 that the local PageRank computations can be per-
formed in a distributed fashion in parallel with the crawl.
Therefore, reducing the cost of the local PageRank compu-
tations are not a bottleneck for computing PageRank with
our scheme, as the local computations can be pipelined
with the crawl.4

4.4 Estimating the Relative Importance of Each Block

In this section, we describe computing the relative impor-
tance, orBlockRank, of each block. Assume there arek
blocks in the web. To compute BlockRanks, we first create

4Generally this requires a site-based crawler (such as the WebBase
crawler [4]) which maintains a pool of active hosts, and crawls hosts to
completion before adding new hosts to the pool.

the block graph B, where each vertex in the graph corre-
sponds to a block in the web graph. An edge between two
pages in the web is represented as an edge between the cor-
responding blocks (or a self-edge, if both pages are in the
same block). The edge weights are determined as follows:
the weight of an edge between blocksI andJ is defined to
be the sum of the edge-weights from pages inI to pages
in J in the web graph, weighted by the local PageRanks of
the linking pages in blockI.

That is, if A is the web graph andli is the local Page-
Rank of pagei in blockI, then weight of edgeBIJ is given
by:

BIJ =
∑

i∈I,j∈J

Aij · li

We can write this in matrix notation as follows. Define the
local PageRank matrixL to be then × k matrix whose
columns are the local PageRank vectors~lJ .

L =











~l1 ~0 · · · ~0
~0 ~l2 · · · ~0
...

...
. . .

...
~0 ~0 · · · ~lK











Define the matrixS to be then×k matrix that has the same
structure asL, but whose nonzero entries are all replaced
by 1. Then the block matrixB is thek × k matrix:

B = LT AS

Notice thatB is a transition matrix where the elementBIJ

represents the transition probability of blockI to blockJ .
That is:

BIJ = p(J |I)

Once we have thek×k transition matrixB, we may use
the standard PageRank algorithm on this reduced matrix to
compute the BlockRank vector~b. That is:

~b = pageRank(B,~vk, ~vk)

where~vk is the uniformk-vector[1
k
]k×1.

Note that this is the same as computing the stationary
distribution of the transition matrixc·B+(1−c)Ek, where
we defineEk = [1]k×1 × ~vk

T . The analogy to the random
surfer model of [14] is this: we imagine a random surfer
going from block to block according to the transition prob-
ability matrix B. At each stage, the surfer will get bored
with probability1 − c and jump to a differentblock.

4.5 Approximating Global PageRank using Local
PageRank and BlockRank

In this section, we find an estimate to the global Page-
Rank vector~x. At this point, we have two sets of rankings.
Within each blockJ , we have the local PageRanks~lJ of the
pages in the block. We also have the BlockRank vector~b
whose elementsbJ are the BlockRank for each blockJ ,
measuring the relative importance of the blocks. We may
now approximate the global PageRank of a pagej ∈ J as

its local PageRanklj , weighted by the BlockRankbJ of the
block in which it resides. That is,

x
(0)
j = lj · bJ

In matrix notation, this is:

~x(0) = L~b

Recall that the local PageRanks of each block sum to 1.
Also, the BlockRanks sum to 1. Therefore, our approxi-
mate global PageRanks will also sum to 1. The reasoning
follows: the sum of of our approximate global PageRanks
sum(xj) =

∑

j xj can be written as a sum over blocks

sum(xj) =
∑

J

∑

j∈J
xj

Using our definition forxj from Equation 4.5

sum(xj) =
∑

J

∑

j∈J
ljbJ =

∑

J
bJ

∑

j∈J
lJ

Since the local PageRanks for each domain sum to 1
(
∑

j∈J lj = 1)

sum(xj) =
∑

J
bJ

And since the BlockRanks also sum to 1 (
∑

J bJ = 1)

sum(xj) = 1

Therefore, we may use our approximate global PageRank
vector~x(0) as a start vector for the standard PageRank al-
gorithm.

4.6 Using This Estimate as a Start Vector

In order to compute the true global PageRank vector~x from
our approximate PageRank vector~x(0), we simply use it as
a start vector for standard PageRank. That is:

~x = pageRank(G, ~x(0), ~v)

whereG is the graph of the web, and~v is the uniform
distribution over root nodes. In Section 7, we show how
to compute different personalizations quickly once~x has
been computed. The BlockRank algorithm for computing
PageRank, presented in the preceding sections, is summa-
rized by Algorithm 3, given in the appendix.

5 Advantages of BlockRank
The BlockRank algorithm has four major advantages over
the standard PageRank algorithm.

Advantage 1 A major speedup of our algorithm comes
from caching effects. All of the host-blocks in our
crawl are small enough so that each block graph fits
in main memory, and the vector of ranks for the ac-
tive block largely fits in the CPU cache. As the full
graph does not fit entirely in main memory, the local
PageRank iterations thus require less disk i/o then the
global computations. The full rank vectors do fit in

main memory; however, using the sorted link struc-
ture5 dramatically improves the memory access pat-
terns to the rank vector. Indeed, if we use the sorted
link structure, designed for BlockRank, as the input
instead to thestandard PageRank algorithm, the en-
hanced locality of reference to the rank vectors cuts
the time needed for each iteration of the standard al-
gorithm by over 1/2: from 6.5 minutes to 3.1 minutes
for each iteration on DNR-LARGEWEB!

Advantage 2 In our BlockRank algorithm, the local Page-
Rank vectors for many blocks will converge quickly;
thus the computations of those blocks may be termi-
nated after only a few iterations. This increases the ef-
fectiveness of the local PageRank computation by al-
lowing it to expend more computation on slowly con-
verging blocks, and less computation on faster con-
verging blocks. Note for instance in Figure 4 that there
is a wide range of rates of convergence for the blocks.
In the standard PageRank algorithm, iterations operate
on the whole graph; thus the convergence bottleneck is
largely due to the slowest blocks. Much computation
is wasted recomputing the PageRank of blocks whose
local computation has already converged.

Advantage 3 The local PageRank computations in Step 1
of the BlockRank algorithm can be computed in a
completely parallel or distributed fashion. That is, the
local PageRanks for each block can be computed on a
separate processor, or computer. The only communi-
cation required is that, at the end of Step 1, each com-
puter should send their local PageRank vector~lj to a
central computer that will compute the global Page-
Rank vector. If our graph consists ofn total pages,
the net communication cost consists of8n bytes (if
using 8-byte double precision floating point values).
Naive parallelization of the computation that does not
exploit block structure would require a transfer of8n
bytesafter each iteration, a significant penalty. Fur-
thermore, the local PageRank computations can be
pipelined with the web crawl. That is, the local Page-
Rank computation for a host can begin as a separate
process as soon as the crawler finishes crawling the
host. In this case, only the costs of Steps 2–4 of the
BlockRank algorithm become rate-limiting.

Advantage 4 In several scenarios, the local PageRank
computations (e.g., the results of Step 1) can be
reused during future applications of the BlockRank
algorithm. Consider for instance news sites such as
cnn.com that are crawled more frequently then the
general web. In this case, after a crawl ofcnn.com,
if we wish to recompute the global PageRank vector,
we can rerun the BlockRank algorithm, except that in
Step 1 of our algorithm, only the local PageRanks for
the cnn.com block need to be recomputed. The re-
maining local PageRanks will be unchanged, and can
be reused in Steps 2–3. In this way, we can also reuse

5As in Section 3, this entails assigning document ids in lexicographic
order of the url (with the components of the full hostname reversed).

Step Wallclock time
1 17m 11s
2 7m 40s
3 0m 4s
4 56m 24s

Total 81m 19s

Table 5: Running times for the individual steps of BlockRankfor
c = 0.85 in achieving a final residual of< 10

−3.

the local PageRank computations for the case of com-
puting several “personalized” PageRank vectors. We
further discuss personalized PageRank in Section 7,
and graph updates in Section 8.

6 Experimental Results
In this section, we investigate the speedup of BlockRank
compared to the standard algorithm for computing Page-
Rank. The speedup of our algorithm for typical scenarios
comes from the first three advantages listed in Section 5.
The speedups are due to less expensive iterations, as well
as fewer total iterations. (Advantage 4 is discussed in sub-
sequent sections)

We begin with the scenario in which PageRank is com-
puted after the completion of the crawl; we assume that
only Step 0 of the BlockRank algorithm is computed con-
currently with the crawl. As mentioned in Advantage 1
from the previous section, simply the improved reference
locality due to blockiness, exposed by lexicographically
sorting the link matrix, achieves a speedup of a factor of 2
in the time needed for each iteration of the standard Page-
Rank algorithm. This speedup is completely independent
of the value chosen forc, and does not affect the rate of
convergence as measured in number of iterations required
to reach a particularL1 residual.

If instead of the standard PageRank algorithm, we use
the BlockRank algorithm on the block structured matrix,
we gain the full benefit of Advantages 1 and 2; the blocks
each fit in main memory, and many blocks converge more
quickly than the convergence of the entire web. We com-
pare the wallclock time it takes to compute PageRank us-
ing the BlockRank algorithm in this scenario, where local
PageRank vectors are computed serially after the crawl is
complete, with the wallclock time it takes to compute Page-
Rank using the standard algorithm given in [14]. Table 5
gives the running times of the 4 steps of the BlockRank
algorithm on the LARGEWEB dataset. The first 3 rows of
Table 6 give the wallclock running times for standard Page-
Rank, standard PageRank using the url-sorted link matrix,
and the full BlockRank algorithm computed after the crawl.
We see there is a small additional speedup for BlockRank
on top of the previously described speedup. Subsequently,
we will describe a scenario in which the costs of Steps
1–3 become largely irrelevant, leading to further effective
speedups.

In this next scenario, we assume that the cost of Step 1
can be made negligible in one of two ways: the local Page-
Rank vectors can be pipelined with the web crawl, or they

Algorithm Wallclock time
Standard 180m 36s
Standard (using url-sorted links) 87m 44s
BlockRank (no pipelining) 81m 19s
BlockRank (w/ pipelining) 57m 06s

Table 6: Wallclock running times for 4 algorithms for computing
PageRank withc = 0.85 to a residual of less than10−3.

PageRank BlockRank
STANFORD/BERKELEY 50 27
LARGEWEB 28 18

Table 7: Number of iterations needed to converge for standard
PageRank and for BlockRank (to a tolerance of10

−4 for STAN-
FORD/BERKELEY, and10

−3 for LARGEWEB).

can be computed in parallel after the crawl. If the local
PageRank vectors are computed as soon as possible (e.g.,
as soon as a host has been fully crawled), the majority of
local PageRank vectors will have been computed by the
time the crawl is finished. Similarly, if the local Page-
Rank vectors are computed after the crawl, but in a dis-
tributed manner, using multiple processors (or machines)
to compute the PageRank vectors independently, the time
it takes to compute the local PageRanks will be low com-
pared to the standard PageRank computation. Thus, only
the running time of Steps 2–4 of BlockRank will be rele-
vant in computing net speedup. The contruction ofB is
the dominant cost of Step 2, but this too can be pipelined;
Step 3 has negligible cost. Thus the speedup of Block-
Rank in this scenario is determined by the increased rate
of convergence in Step 4 that comes from using the Block-
Rank approximation~x(0) as the start vector. We now take
a closer look at the relative rates of convergence. In Fig-
ure 5(a), we show the convergence rate of standard Page-
Rank, compared to the convergence of Step 4 of Block-
Rank on the STANFORD/BERKELEY dataset for a random
jump probability1− c = 0.15 (i.e.,c = 0.85). Note that to
achieve convergence to a residual of10−4, using the Block-
Rank start vector leads to a speedup of a factor of 2 on the
STANFORD/BERKELEY dataset. The LARGEWEB dataset
yielded an increase in convergence rate of 1.55. These re-
sults are summarized in Table 7. Combined with the first
effect described above (from the sorted link structure), in
this scenario, our algorithm yields a net speedup of over 3.
(For higher values ofc, as explored in [11], the speedup
is even more significant; for example we got a 10-times
speedup on the STANFORD/BERKELEY dataset when we
setc = 0.99.)

These results are the most significant speedup results to
date for computing PageRank, and the only results show-
ing significant speedup forc = 0.85 on large datasets.
Also, it should be noted that the BlockRank algorithm can
be used in conjunction with other methods of accelerating
PageRank, such as Quadratic Extrapolation [11], or Gauss-
Seidel [6, 1] (or both). These methods would simply be
applied to Step 4 in the BlockRank algorithm. When used
in conjunction with these methods, one should expect even

0 10 20 30 40 50
−14

−12

−10

−8

−6

−4

−2

0

2
Standard PageRank
BlockRank

Figure 5: Convergence rates for standard PageRank (solid line)
vs. BlockRank (dotted line). Thex-axis is the number of itera-
tions, and they-axis is the log of theL1-residual. STANFORD/
BERKELEY data set;c = 0.85.

faster convergence for BlockRank; these hybrid approaches
are left for future study.

7 Personalized PageRank

In [14], it was originally suggested that, by changing the
random jump vector~v to be nonuniform, the resultant
PageRank vector can be biased to prefer certain kinds
of pages. For example, a random surfer interested in
sports may get bored every once in a while and jump
to http://www.espn.com, while a random surfer interested
in current events may instead jump tohttp://www.cnn.com
when bored. While personalized PageRank is a compelling
idea, in general it requires computing a large number of
PageRank vectors.

We use the BlockRank algorithm and a simple restric-
tion on the jump behavior of the random surfer to dramat-
ically reduce the computation time of personalized Page-
Rank. The restriction is this: instead of being able to
choose a distribution overpages to which he jumps when
he’s bored, the random surfer may choosehosts. For exam-
ple, the random surfer interested in sports may jump to the
www.espn.com host, but he may not, for example, jump to
http://www.espn.com/ncb/columns/forde pat/index.html. We
can then encode the personalization vector in thek-
dimensional vector~vk (wherek is the number of host-
blocks in the web) that is a distribution over different hosts.

With this restriction, the local PageRank vectors~lJ will
not change for different personalizations. In fact, since the
local PageRank vectors~lJ do not change for different per-
sonalizations, neither does the block matrixB.

Only the BlockRank vector~b will change for different
personalizations. Therefore, we only need to recompute
the BlockRank vector~b for each block-personalization vec-
tor ~vk.

The personalized PageRank computation could proceed
as follows. Assuming you have already computed a generic
PageRank vector once using the BlockRank algorithm, and
have stored the block-transition matrixB, the personal-
ized BlockRank algorithm is simply the last 3 steps of the

generic BlockRank algorithm.

7.1 Inducing Random Jump Probabilities Over Pages

The Personalized BlockRank algorithm requires that the
random surfer not have the option of jumping to a specific
page when he bores (he may only jump to the host). How-
ever, the last step in the BlockRank algorithm requires a
random jump probability distribution~v overpages. Thus,
we need to induce the probabilityp(j) that the random
surfer will jump to a pagej if we know the probability
p(J) that he will jump to hostJ in which pagej resides.
We induce this probability as follows:

p(j) = p(J)p(j|J) (2)

That is, the probability that the random surfer jumps to
pagej is the probability that he will jump to hostJ , times
the probability of being at pagej given that he is in hostJ .

Since the local PageRank vector~lJ is the stationary
probability distribution of pages within hostJ , p(j|J) is
given by the element of~lJ corresponding to pagej. There-
fore, the elementsLjJ of the matrixL correspond toLjJ =
p(j|J). Also, by definition, the elements(vk)J = p(J).
Therefore, in matrix notation, Equation 2 can be written as
~v = L~vk.

7.2 Using “Better” Local PageRanks

If we have already computed the generic PageRank vector
~x, we have even “better” local PageRank vectors than we
began with. That is, we can normalize segments of~x to
form the normalized global PageRank segments~gJ as de-
scribed in Section 4. These scores are of course better esti-
mates of the relative magnitudes of pages within the block
than the local PageRank vectors~lJ , since they are derived
from the generic PageRank vector for the full web. So we
can modify Personalized BlockRank as follows. Let us de-
fine the matrixH in a manner similar to the way we defined
L, except using the normalized global PageRank segments
~gJ rather than the local PageRank vectors~lJ . Again, we
only need to computeH once. We define the matrixBH to
be similar to the matrixB as defined in Equation 4.4, but
usingH instead ofL:

BH = HT AS (3)

7.3 Experiments

We test this algorithm by computing the Personalized
PageRank of a random surfer who is a graduate student
in linguistics at Stanford. When he bores, he has an
80% probability of jumping to the linguistics hostwww-
linguistics.stanford.edu, and a 20% probability of jumping
to the main Stanford hostwww.stanford.edu. Figure 6 shows
that the speedup of computing the Personalized PageRank
for this surfer shows comparable speedup benefits to stan-
dard BlockRank. However, the main benefit is that the lo-
cal PageRank vectors do not need to be computed at all
for Personalized BlockRank. The matrixH is formed from

0 10 20 30 40 50
−14

−12

−10

−8

−6

−4

−2

0

2
Personalized BlockRank
Personalized PageRank

Figure 6: Convergence of Personalized PageRank computations
using standard PageRank and Personalized BlockRank.

the already computed generic PageRank vector. Therefore,
the overhead to computing Personalized PageRank vectors
using the Personalized BlockRank algorithm is minimal.

8 Node Updates
We can also utilize the strategy of reusing Local PageRank
vectors when we wish to recompute PageRank after several
pages have been added or removed from the web. Since
the web is highly dynamic, with web pages being added
or removed all the time, this is an important problem to
address. In particular, we wish to crawl certain hosts, such
as daily news providers such ascnn.com more frequently
than others.

If we use BlockRank to compute the PageRank vector~x,
and store the local PageRank vectors~lJ , then we only need
to recompute the local PageRanks of those hosts to which
pages have been added or removed at each update.

9 Conclusion
We have shown that the hyperlink graph of the web has
a nested block structure, something that has not yet been
thoroughly investigated in studies of the web. We exploit
this structure to compute PageRank in a fast manner us-
ing an algorithm we call BlockRank. We show empirically
that BlockRank speeds up PageRank computations by fac-
tors of 2 and higher, depending on the particular scenario.
There are a number of areas for future work: finding the
“best” blocks for BlockRank by splitting up what would
be slow-mixing blocks with internal nested block structure;
using the block structure for hyperlink-based algorithms
other than web search, such as in clustering or classifica-
tion; and exploring more fully the topics of of updates and
personalized PageRank.

10 Acknowledgments
This paper is based on work supported in part by the Na-
tional Science Foundation under Grant No. IIS-0085896
and Grant No. CCR-9971010, and in part by the Research
Collaboration between NTT Communication Science Lab-
oratories, Nippon Telegraph and Telephone Corporation

and CSLI, Stanford University (research project on Con-
cept Bases for Lexical Acquisition and Intelligently Rea-
soning with Meaning).

References
[1] A. Arasu, J. Novak, A. Tomkins, and J. Tomlin. PageRank

computation and the structure of the web: Experiments and
algorithms. InProceedings of the Eleventh International
World Wide Web Conference, Poster Track, 2002.

[2] K. Bharat, B.-W. Chang, M. Henzinger, and M. Ruhl. Who
links to whom: Mining linkage between web sites. In
Proceedings of the IEEE International Conference on Data
Mining, November 2001.

[3] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Ra-
jagopalan, R. Stata, A. Tomkins, and J. Wiener. Graph struc-
ture in the web. InProceedings of the Ninth International
World Wide Web Conference, 2000.

[4] J. Cho and H. Garcia-Molina. Parallel crawlers. InProceed-
ings of the Eleventh International World Wide Web Confer-
ence, 2002.

[5] P.-J. Courtois. Queueing and Computer System Applica-
tions. Academic Press, 1977.

[6] G. H. Golub and C. F. V. Loan.Matrix Computations. The
Johns Hopkins University Press, Baltimore, 1996.

[7] G. Grimmett and D. Stirzaker.Probability and Random Pro-
cesses. Oxford University Press, 1989.

[8] T. H. Haveliwala. Topic-sensitive PageRank. InProceedings
of the Eleventh International World Wide Web Conference,
2002.

[9] J. Hirai, S. Raghavan, H. Garcia-Molina, and A. Paepcke.
Webbase: A repository of web pages. InProceedings of the
Ninth International World Wide Web Conference, 2000.

[10] G. Jeh and J. Widom. Scaling personalized web search. In
Proceedings of the Twelfth International World Wide Web
Conference, 2003.

[11] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H.
Golub. Extrapolation methods for accelerating PageRank
computations. InProceedings of the Twelfth International
World Wide Web Conference, 2003.

[12] J. Kleinberg, S. R. Kumar, P. Raghavan, S. Rajagopalan,and
A. Tomkins. The web as a graph: Measurements, models,
and methods. InProceedings of the International Confer-
ence on Combinatorics and Computing, 1999.

[13] D. McAllister, G. Stewart, and W. Stewart. On a rayleigh-riz
refinement technique for nearly uncoupled stochastic matri-
ces.Linear Algebra and Its Applications, 60:1–25, 1984.

[14] L. Page, S. Brin, R. Motwani, and T. Winograd. The Page-
Rank citation ranking: Bringing order to the web.Stanford
Digital Libraries Working Paper, 1998.

[15] S. Raghavan and H. Garcia-Molina. Representing web
graphs. InProceedings of the IEEE Intl. Conference on Data
Engineering, March 2003.

[16] M. Richardson and P. Domingos. The intelligent surfer:
Probabilistic combination of link and content information
in pagerank. InAdvances in Neural Information Processing
Systems, volume 14. MIT Press, Cambridge, MA, 2002.

[17] H. A. Simon and A. Ando. Aggregation of variables in dy-
namic systems.Econometrica, 29:111–138, 1961.

Appendix
This appendix summarizes the BlockRank and Personal-
ized BlockRank algorithms presented in this paper. The
standard BlockRank algorithm for computing PageRank is
summarized in Algorithm 3.6

0. Sort the web graph lexicographically as described
in Section 3, exposing the nested block structure of the
web.
1. Compute the local PageRank vector~lJ for each
blockJ .

foreachblock J do
~lJ = pageRank(GJJ , ~sJ , ~vJ);

end

2. Compute block transition matrixB and Block-
Ranks~b.

B = LT AS
~b = pageRank(B,~vk, ~vk)

3. Find an approximation~x(0) to the global PageRank
vector~x by weighting the local PageRanks of pages in
blockJ by the BlockRank ofJ .

~x(0) = L~b

4. Use this approximation as a start vector for a standard
PageRank iteration.

~x(0) = pageRank(G, ~x(0), ~v)

Algorithm 3: BlockRank Algorithm

6In the newest iteration of the WebBase system, the site-based crawler
stores pages from different hosts in different files, makingStep 0 practical.
Furthermore, the WebBase system currently maintains a sorted list of the
urls for efficiently encoding the url-lookup table. For these reasons, we do
not include the cost of Step 0 in future discussion unless explicitly stated.

The Personalized BlockRank algorithm for computing
different personalizations of PageRank is summarized in
Algorithm 4. Assuming you have already computed a
generic PageRank vector once using the BlockRank algo-
rithm, and have computedH from the generic PageRank
vector~x, andBH as defined in Equation 3, the algorithm
proceeds as follows:

For a given block-personalization vector~vk,
1. Compute the personalized BlockRank vector~b

~b = pageRank(BH , ~s, ~vk), where ~s is a uni-
form start vector.

2. Find an approximation~x(0) to the global Page-
Rank vector~x by weighting the local PageRanks of
pages in blockJ by the personalized BlockRank ofJ .

~x(0) = H~b

3. Induce the personalization vector~v over pages
from the personalization vector over hosts~vk.

~v = H~vk

4. Use this approximation as a start vector for a
standard PageRank iteration.

~x = pageRank(G, ~x(0), ~v)

Algorithm 4: Personalized BlockRank Algorithm

