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ABSTRACT

We present a novel algorithm for the fast computation of Ragd,

a hyperlink-based estimate of the “importance” of Web pagés
original PageRank algorithm uses the Power Method to coenput
successive iterates that converge to the principal eigtowef the
Markov matrix representing the Web link graph. The alganith
presented here, called Quadratic Extrapolation, acdekethe con-
vergence of the Power Method by periodically subtractirfgest
timates of the nonprincipal eigenvectors from the curreraie of
the Power Method. In Quadratic Extrapolation, we take athgm

of the fact that the first eigenvalue of a Markov matrix is kmow
to be 1 to compute the nonprincipal eigenvectors using Sgoce
iterates of the Power Method. Empirically, we show that gsin
Quadratic Extrapolation speeds up PageRank computati@b-by
300% on a Web graph of 80 million nodes, with minimal overhead
Our contribution is useful to the PageRank community anchthe
merical linear algebra community in general, as it is a fasthod
for determining the dominant eigenvector of a matrix thatois
large for standard fast methods to be practical.
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1. INTRODUCTION

The PageRank algorithm for determining the “importance” of
Web pages has become a central technique in Web search [e]. T
core of the PageRank algorithm involves computing the ppaic
eigenvector of the Markov matrix representing the hypériitruc-
ture of the Web. As the Web graph is very large, containing ave
billion nodes, the PageRank vector is generally computéthef
during the preprocessing of the Web crawl, before any ge¢iaee
been issued.

The development of techniques for computing PageRank effi-
ciently for Web-scale graphs is important for a number ofoezs.
For Web graphs containing a billion nodes, computing a PagkR
vector can take several days. Computing PageRank quicklyds
essary to reduce the lag time from when a new crawl is contplete
to when that crawl can be made available for searching. Eurth
more, recent approaches to personalized and topic-senBiige-
Rank schemes [11, 20, 14] require computinany PageRank vec-
tors, each biased towards certain types of pages. Theseaaheis
intensify the need for faster methods for computing PagkRan

Eigenvalue computation is a well-studied area of numetinal
ear algebra for which there exist many fast algorithms. Hewne
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many of these algorithms are unsuitable for our problemagiti-
quire matrix inversion, a prohibitively costly operaticor fa Web-
scale matrix. Here, we present a series of novel algorithewisedd
expressly for the purpose of accelerating the convergehtbeo
iterative PageRank computation. We show empirically on @n 8
million page Web crawl that these algorithms speed up thepcem
tation of PageRank by 25-300%.

1.1 Preliminaries

In this section we summarize the definition of PageRank [18]
and review some of the mathematical tools we will use in analy
ing and improving the standard iterative algorithm for caomipy
PageRank.

Underlying the definition of PageRank is the following basse
sumption. A link from a page. € Web to a pagev € Web can
be viewed as evidence thatis an “important” page. In particu-
lar, the amount of importance conferred @iy v is proportional
to the importance of. and inversely proportional to the number of
pagesu points to. Since the importance #fis itself not known,
determining the importance for every page Web requires an
iterative fixed-point computation.

To allow for a more rigorous analysis of the necessary compu-
tation, we next describe an equivalent formulation in teohs
random walk on the directed Web gragh Letu — v denote the
existence of an edge fromto v in G. Letdeg(u) be the outdegree
of pageu in G. Consider a random surfer visiting pagat timek.

In the next time step, the surfer chooses a n@deom amongu’s
out-neighbors{v|u — v} uniformly at random. In other words, at
time k + 1, the surfer lands at nodg € {v|u — v} with proba-
bility 1/ deg(u).

The PageRank of a pages defined as the probability that at
some particular time step > K, the surfer is at page For
sufficiently largeK’, and with minor modifications to the random
walk, this probability is unique, illustrated as follows.ol&ider
the Markov chain induced by the random walk Gf) where the
states are given by the nodes@h and the stochastic transition
matrix describing the transition fromto j is given by P with
Pij = 1/ deg(z)

For P to be a valid transition probability matrix, every node must
have at least 1 outgoing transition; i.&.should have no rows con-
sisting of all zeros. This holds & does not have any pages with
outdegreed, which does not hold for the Web grapt? can be
converted into a valid transition matrix by adding a complsét
of outgoing transitions to pages with outdegfedn other words,
we can define the new matri®’ where all states have at least one
outgoing transition in the following way. Let be the number of
nodes (pages) in the Web graph. lzebe then-dimensional col-
umn vector representing a uniform probability distribatmver all



7= z,
w = |Z|[x — |[#]]1;
¥ =49+ wd,

Algorithm 1: Computingy = A%

nodes:

7= [%]m &

Let d be then-dimensional column vector identifying the nodes
with outdegred:

1 if deg(¢) =0,
d; = .
0 otherwise

Then we construcP’ as follows:
D=d- g7
P=P+D

In terms of the random walk, the effect B is to modify the tran-
sition probabilities so that a surfer visiting a danglingedi.e., a
page with no outlinks) randomly jumps to another page in e n
time step, using the distribution given by

By the Ergodic Theorem for Markov chains [9], the Markov
chain defined by?’ has a unique stationary probability distribution
if P’ is aperiodic and irreducible; the former holds for the Marko
chain induced by the Web graph. The latter holdGiffs strongly
connected, which is generalhot the case for the Web graph. In
the context of computing PageRank, the standard way of egsur
this property is to add a new set of complete outgoing treomsif
with small transition probabilities, tall nodes, creating a complete
(and thus strongly connected) transition graph. In matoibation,
we construct the irreducible Markov matdX’ as follows:

E=[1]nx1 x 3"
P'"=cP'+(1-¢)E

In terms of the random walk, the effect Bfis as follows. At each
time step, with probabilitf1 — ¢), a surfer visiting any node will
jump to a random Web page (rather than following an outlifikle
destination of the random jump is chosen according to thbgsro
bility distribution given in@. Artificial jumps taken because &
are referred to akeleportation.

By redefining the vecto¥ given in Equation 1 to be nonuniform,
so thatD andE add artificial transitions with nonuniform probabil-
ities, the resultant PageRank vector can be biased to prefeain
kinds of pages. For this reason, we refef'tas thepersonalization
vector.

For simplicity and consistency with prior work, the remaénd
of the discussion will be in terms of the transpose matdx—=
(P")T; i.e., the transition probability distribution for a surfat
nodei is given by rowi of P, and column of A.

Note that the edges artificially introduced byand E never need
to be explicitly materialized, so this construction has mpact on
efficiency or the sparsity of the matrices used in the contjmrs.
In particular, the matrix-vector multiplicatiofi = A# can be im-
plemented efficiently using Algorithm 1.

Assuming that the probability distribution over the sugdo-
cation at time0 is given by#?, the probability distribution for
the surfer's location at timé is given byZ®) = A*#©. The
unique stationary distribution of the Markov chain is defires

limg 00 z*), which is equivalent tdimy_, . A*z(®, and is in-
dependent of the initial distributiod‘®. This is simply the prin-
cipal eigenvector of the matrid = (P")”, which is exactly the
PageRank vector we would like to compute.

The standard PageRank algorithm computes the principaheig
vector by starting witi#(®) = & and computing successive iterates
#® = Ag*~1 until convergence. This is known as the Power
Method, and is discussed in further detail in Section 3.

While many algorithms have been developed for fast eigenvec
tor computations, many of them are unsuitable for this bl
because of the size and sparsity of the Web matrix (see 8ettio
for a discussion of this).

In this paper, we develop a fast eigensolver, based on thePow
Method, that is specifically tailored to the PageRank probéad
Web-scale matrices. This algorithm, called Quadratic &dfa-
tion, accelerates the convergence of the Power Method ky per
odically subtracting off estimates of the nonprincipalezigectors
from the current iterat&®). In Quadratic Extrapolation, we take
advantage of the fact that the first eigenvalue of a Markowimat
is known to be 1 to compute estimates of the nonprincipalreige
vectors using successive iterates of the Power Method. dlhis
lows seamless integration into the standard PageRankithlgor
Intuitively, one may think of Quadratic Extrapolation asngssuc-
cessive iterates generated by the Power Method to extrtapthie
value of the principal eigenvector.

2. EXPERIMENTAL SETUP

In the following sections, we will be introducing a seriesatifo-
rithms for computing PageRank, and discussing the raterofeze
gence achieved on realistic datasets. Our experimentgh seis
as follows. We used two datasets of different sizes for opeex
iments. The $ANFORD.EDU link graph was generated from a
crawl of thest anf or d. edu domain created in September 2002
by the Stanford WebBase project. This link graph containgnty
280,000 nodes, with 3 million links, and requires 12MB ofratze.
We used SANFORD.EDU while developing the algorithms, to get
a sense for their performance. For real-world, Web-scattope
mance measurements, we used theRGEWEB link graph, gen-
erated from a large crawl of the Web that had been createdeby th
Stanford WebBase project in January 2001 [13}RIGEWEB con-
tains roughly 80M nodes, with close to a billion links, anduies
3.6GB of storage. Both link graphs had dangling nodes rethove
as described in [18]. The graphs are stored using an adjatishc
representation, with pages represented by 4-byte intdgatifiers.
On an AMD Athlon 1533MHz machine with a 6-way RAID-5 disk
volume and 2GB of main memory, each application of Algorithm
on the 80M page hRGEWEB dataset takes roughly 10 minutes.
Given that computing PageRank generally requires up to pO0 a
plications of Algorithm 1, the need for fast methods is clear

We measured the relative rates of convergence of the digsit
that follow using the k norm of the residual vector; i.e.,

||Am(k) _ m(k)||1

We describe why the L residual is an appropriate measure in Sec-
tion 6.

3. POWER METHOD

3.1 Formulation

One way to compute the stationary distribution of a Markov
chain is by explicitly computing the distribution at sucsigs time
steps, using® = Az*~1 until the distribution converges.



function#(™ = PowerMethod() { 1 c=0.90 —=—
+(0) _ = c=0.95 —o-—
T =,
k=1,
repeat _ 01 % il
k) — Af(k—l); g o\%
5= []a® —2®=1|y; g
k=k+1, : “oaq
until § < ¢; - o001t O%% ]
} OOOSQ
@6968
Algorithm 2: Power Method PSoq,
0.001 .
0O 10 20 30 40 50 60 70 80
This leads us to Algorithm 2, the Power Method for computing # of iterations
the principal eigenvector afi. The Power Method is the oldest
method for computing the principal eigenvector of a matargd Figure 1: Comparison of convergence rate for the standard
is at the heart of both the motivation and implementationhaf t  Power Method on the LARGEWEB dataset for ¢ = 0.90 and
original PageRank algorithm (in conjunction with Algorithl). c=0.95.
The intuition behind the convergence of the power method is a
follows. For simplicity, assume that the start veci#i’f) lies in
the subspace spanned by the eigenvectors.bfThenz(®) can be has generally not been possible, as the convergence of BageR
written as a linear combination of the eigenvectorstof slows down dramatically for small values bf- ¢ (i.e., values ot
0) . . close to 1).
T =urt ozt ...+ amlim @) In Figure 1, we show the convergence on theRlIGEWEB dataset
Since we know that the first eigenvalue of a Markov matrixis= of the Power Method for € {0.90, 0.95} using a uniformy. Note
1, that increasing: slows down convergence. Since each iteration of
the Power Method takes 10 minutes, computing 100 iteratiens
W = AZ© = @) + asdola + .. . + A Amim 3) quires over 16 hours. As the full Web is estimated to conts@r o
and two hillion static pages, using the Power Method on Web gsaph
close to the size of the Web would require several days of cemp
™ = A7 = @ + AT 4 .. A O AL (4) tation.
In the next sections, we describe how to remove the error com-
Sinced, < ... < A2 < 1, A #O approaches; asn grows ponents ofz(®) along the direction ofi; ands, thus increasing

large. Therefore, the Power Method converges to the piihcip the effectiveness of Power Method iterations.
eigenvector of the Markov matriA.

3.2 Operation Count 4. AITKEN EXTRAPOLATION
A single iteration of tr}% Power Mﬁtho;lj consist(s ;))f the single

matrix-vector multiplyAZ'*’. Generally, this is al¥(n”) opera- ;

tion. However, if the matrix-vector multiply is performed & Al- 4.1 quml_JIatlon. . . .

gorithm 1, the matrix4 is so sparse that the matrix-vector multiply ~_ We begin by introducing an algorithm which we shall call itk

is essentiallyO(n). In particular, the average outdegree of pages EXxtrapolation. We deve]iog Aitken Extrapolation as followa/e

on the Web has been found to be around 7 [16]. On our datasets @ssume that the iterafé*~* can be expressed as a linear com-

we observed an average of around 8 outlinks per page. bination of the first two eigenvectors. This assumptionveslais
It should be noted that X is close to 1, then the power method ~ t0 solve for the principal eigenvectai; in closed form using the
is slow to converge, becausemust be large befora} is close to successive iterate®* ), ..., 7).
0, and vice versa. Of course Z*~2 can only be approximated as a linear combi-
nation of the first two eigenvectors, so tfie that we compute is
3.3 Results and Discussion only an estimate of the tru@,. However, it can be seen from sec-
As we show in [12], the eigengap— |A.| for the Web Markov tion 3.1 that this approximation becomes increasingly eateuas
matrix A is given exactly by the teleport probability— c. Thus, k becomes larger. . . . .
when the teleport probability is large, and the personttinaec- We begin our formulation of Aitken Extrapolation by assugin
tor 7 s uniform over all pages, the Power Method works reasonably that#*~*) can be expressed as a linear combination of the first

well. However, for a large teleport probability (and with miform two eigenvectors.
personalization vecta¥), the effect of link spam is increased, and
pages can achieve unfairly high rankirfge the extreme case, for
a teleport probability of — ¢ = 1, the assignment of rank to pages
becomes uniform. Chakrabarti et al. [5] suggest thahould be
tuned based on the connectivity of topics on the Web. Sudhdun

f(k_Q) = U1 + a2 (5)

Since the first eigenvalug; of a Markov matrix isl, we can write
the next two iterates as:

1This assumption does not affect convergence guarantees.
on s - . . . _ _

A high teleport probability means that every page is givexedfi‘bonus k=1 — Az*k-2 _— g = 6
rank. Link spammers can make use of this bonus to generatesiiactures :1: *) x(k,l) U1t ag)\zw ©)
to inflate the importance of certain pages. Y = Ax = i1+ aaAyis )



Now, let us define

(xl(kfl) _ x§k72))2

®)
9)

wherez; represents thé¢th component of the vectaf. Doing sim-
ple algebra using equations 6 and 7 gives:

i

hi mgk) — le(vk_l) + mgk_z)

function@* = Aitken(z*—2, 2= z(*)) {

fori=1:ndo
(k=1) _ (k=2)y2.

9i = (x7, i
h; = xgk) — 2x§k_1) + xgk_Q);
o =a — gi/hs;

end

}

Algorithm 3: Aitken Extrapolation

gi a3 (A2 — 1) (u2); (10)
hi = az()\z - 1)2(’LL2)i (11)
Now, let us definef; as the quotieng; /h;:
2 2 2
gi az (A2 — 1) (u2);
== = ——= L - 12
=t T w0e — 1w (12)
= az(UQ)i (13)
Therefore,
fz 0121_1:2 (14)

Hence, from equation 5, we have a closed-form solutiorizfor

=75 s =" — f (15)

functionZ(™ = AitkenPowerMethod() {
&0 =y,
k=1,
repeat
20 = Agk-1).
§=|z® —a® V||
periodically, ) = Aitken(2F~2, gk-1, gk);
k=k+1,
until § < e;

}

However, since this solution is based on the assumptiom‘:‘fﬁéiz)
can be written as a linear combination®f and -, equation 15
gives only an approximation t@;. Algorithm 3 and Algorithm 4
show how to use Aitken Extrapolation in conjunction with Braver
Method to get consistently better estimates of

Aitken Extrapolation is equivalent to applying the wellgamn

Algorithm 4: Power Method with Aitken Extrapolation

of one extrapolation step is less than the operation couatsih-
gle iteration of the Power Method, and since Aitken Extrafioh
may be applied only periodically, we say that Aitken Extriagion

Aitken A? method for accelerating linearly convergent sequences [1jhas minimal overhead. In our implementation, the addificnat

to each component of the itera#&" =2 . What is novel here is this
derivation of Aitken acceleration, and the proof that Artleeceler-
ation computes the principal eigenvector of a Markov matriane
step under the assumption that the power-iteration essiff&t 2
can be expressed as a linear combination of the first two weégen
tors.

As a sidenote, let us briefly develop a related method. Rather
than using equation 8, let us defiggealternatively as:

g = (@Y =2 @ — 2" 7) = alha(he — 1) (wa)}
We defineh as in equation 9, anfi, now becomes

a3da(A2 — 1)%(us)?
az(Az — 1)2(’!1,2)7;
az A2 (u2);

_ g

fi o

By equation 6,

—

1_1:1 = x(k_l) - az)\z’l_i2 = .’Z“(kil) - f
Again, this is an approximation t@, since it's based on the as-
sumption thatz*~2) can be expressed as a linear combination of
i, and#dz. What is interesting here is that this is equivalent to
performing a second-order epsilon acceleration algorithh on
each component of the iteraf® ~2). For this reason, we call this
algorithm Epsilon Extrapolation.

4.2 Operation Count

In order for an extrapolation method such as Aitken Extrapol
tion or Epsilon Extrapolation to be useful, the overheadutthbe
minimal. By overhead, we mean any costs in addition to theafos
applying Algorithm 1 to generate iterates. It is clear frampec-
tion that the operation count of the loop in Algorithm 30%n),
wheren is the number of pages on the Web. The operation count

of each application of Aitken Extrapolation was negligiblabout
1% of the cost of a single iteration of the Power Method (il&5,
of the cost of Algorithm 1).

4.3 Experimental Results

In Figure 2, we show the convergence of the Power Method
with Aitken Extrapolation applied once at the 10th iterafioom-
pared to the convergence of the unaccelerated Power Mettod f
the STANFORD.EDU dataset. The-axis denotes the number of
times a multiplicationAZ occurred; i.e., the number of times Al-
gorithm 1 was needed. Note that there is a spike at the aatieler
step, but speedup occurs nevertheless. This spike is caysbe
poor approximation fots.

Forc = 0.99, Aitken Extrapolation takes 38% less time to reach
an iterate with a residual 6t01. However, after this initial speedup,
the convergence rate for Aitken slows down, so that to readh a
erate with a residual d@i.002, the time savings drops to 13%. For
lower values ofe, Aitken provided much less benefit. Since there
is a spike in the residual graph, if Aitken Extrapolation pked
too often, the power iterations will not converge. In expemts,
Epsilon Extrapolation performed similarly to Aitken Expiation.

4.4 Discussion

In this section, we presented Aitken Extrapolation, andbaadly
related method called Epsilon Extrapolation. Aitken Eptiation
is equivalent to applying the well-known Aitkeh? method [1] to
each component of the itera#® 2, and Epsilon Extrapolation is
equivalent to applying a second-order epsilon acceleratiethod
to each component of the itera#® 2 [22]. What is novel here
is this derivation of these methods, and the proof that theesi-
ods compute the principal eigenvector of a Markov matrix e o
step under the assumption that the power-iteration essigitar 2
can be expressed as a linear combination of the first two eégen
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Figure 2: Comparison of convergence rate for unacceler-
ated Power Method and Aitken Extrapolation on the STAN-
FORD.EDU dataset, forc = 0.99. Extrapolation was applied
at the 10th iteration.

tors. Furthermore, these methods have not been used thtes far
accelerate eigenvector computations.

These methods are very different from standard fast eidesrso
which generally rely strongly on matrix factorizations omtmix
inversions. Standard fast eigensolvers do not work wellttier
PageRank problem, since the web hyperlink matrix is so large
sparse. For problems where the matrix is small enough foffan e
cient inversion, standard eigensolvers such as invers#ida are
likely to be faster than these methods. The Aitken and Epsibo-
trapolation methods take advantage of the fact that thedfigsn-
value of the Markov hyperlink matrix is 1 to find an approximat
to the principal eigenvector.

In the next section, we present Quadratic Extrapolatiorichvh
assumes the iterate can be expressed as a linear combioftin
first three eigenvectors, and solves fiit in closed form under this
assumption. As we shall soon discuss, the Quadratic Exttipo
step is simply a linear combination of successive iterated,thus
does not produce spikes in the residual.

5. QUADRATIC EXTRAPOLATION

5.1 Formulation

We develop the Quadratic Extrapolation algorithm as foiow
We assume that the Markov matt¥khas only 3 eigenvectors, and
that the iterateg*~3) can be expressed as a linear combination of
these 3 eigenvectors. These assumptions allow us to salvheo
principal eigenvectot; in closed form using the successive iterates
g3 gk,

Of course,A has more than 3 eigenvectors, attil—® can only
be approximated as a linear combination of the first threereigc-
tors. Therefore, th&; that we compute in this algorithm is only an
estimate for the tru@;. We show empirically that this estimate is
a better estimate t; than the iterat&*~3), and that our estimate
becomes closer to the true valueitifask becomes larger. In Sec-
tion 5.3 we show that by periodically applying Quadraticragb-
lation to the successive iterates computed in PageRankafoes

f(k_s) = 41 + a2t + a3ls (16)
We then define the successive iterates
gFD = pgt® 17)
gD = Azt (18)
™ = AgkV (19)

Since we assumd has 3 eigenvectors, the characteristic polyno-
mial pa(A) is given by:

pa(A) =70 + 1A+ 7227 + 32 (20)

A is a Markov matrix, so we know that the first eigenvalue =
1. The eigenvalues ofi are also the zeros of the characteristic
polynomialp (). Therefore,

pa(l)=0=y+7+72+73=0 (21)

The Cayley-Hamilton Theorem states that any mattisatisfies
it's own characteristic polynomial4 (A) = 0 [8]. Therefore, by
the Cayley-Hamilton Theorem, for any vectoin R",

pa(A)z=0= [yl +y1A+71A> +v34%2=0 (22
Lettingz = £*~3),
Yol + 1A+ 7247 + 3A4%253 = ¢ (23)
From equations 17-19,
Yo&F* 7 4 pn@* P 4 ypz® D sz =0 (249)
From equation 21,
F* D (y — 2 —y3) +mE* D +
72*D +432% =0 (25)
We may rewrite this as,
(f(kfz) _ ‘,Z(k*ii)),yl + (i:(kfl) _ f(k*3))72 +
@ —&* V) =0 (26)
Let us make the following definitions:
ﬁ(k_2) = gk=2) _ 2(k=3) (27)
gD = gD _ gke3) (28)
F® #B) _ z(k=3) (29)
We can now write equation 26 in matrix notation:
(72 g0 g )5=0 (30)

We now wish to solve foff. Since we're not interested in the trivial
solutiony = 0, we constrain the leading term of the characteristic
polynomial~ys:

Y3 = 1 (31)

We may do this because constraining a single coefficient ®f th
polynomial does not affect the zerbsEquation 30 is therefore

of ¢ close to 1, we can speed up the convergence of PageRank by dVritten:

factor of over 3.

We begin our formulation of Quadratic Extrapolation by assu
ing thatA has only three eigenvectois, . . . , i3 and approximat-
ing #*~% as a linear combination of these three eigenvectors.

)

(k1) =

( ?j(k—2) i

(%) &

3l.e., equation 31 fixes a scaling fgr




function#* = QuadraticExtrapolation(zZ*=%), ...
forj=k—2:kdo
7D = ) g3,

,7M) {

end
Y = ( g2 kD );
v =1;
( % ) =Yg

Y2
Yo = —(71 + 2 +73);
Bo=v1+7+7;
L= +73;
B2 ="3;

T = ﬁof(k_2) +,@1.’E(k_l) +ﬂ2f(k),

—

Algorithm 5: Quadratic Extrapolation

This is an overdetermined system, so we solve the corregmpnd
least-squares problem.

o
Y2
whereY * is the pseudoinverse of the mattix= (7*~2 37(’“‘1)).

Now, equations 31, 33, and 21 completely determine the eoeffi
cients of the characteristic polynomjak (\) (equation 20).

We may now dividen4 (A) by A —1 to get the polynomiaja (A),
whose roots ara» and\s, the second two eigenvalues 4f

> =y tg® (33)

Yo + 1A+ ’Y2>\2 + ’73)\3
A=—1

Simple polynomial division gives the following values &, 31,
andfs:

qa(N) = = Bo + Bir+ B2\’ (34)

Bo Y1+ 72+ 73 (35)
B = 72+9s (36)
B2 = 7 (37)

Again, by the Cayley-Hamilton Theorem, ifis any vector in
R",
qa(A)z = 1 (38)

wherei; is the eigenvector oft corresponding to eigenvalue 1 (the
principal eigenvector). Letting = Z*~2),

it = qa(A)F*P = [Bol + frA+ B A7FFD (39)
From equations 17-19, we get a closed form solutionzfor
i1 = Bo™ 2 + B1E* Y 4 Bog®) (40)

However, since this solution is based on the assumption4trats
only 3 eigenvectors, equation 40 gives only an approximati
1.

Algorithms 5 and 6 show how to use Quadratic Extrapolation
in conjunction with the Power Method to get consistentlytdret
estimates ofi;.

5.2 Operation Count

The overhead in performing the extrapolation shown in Algo-
rithm 5 comes primarily from the least-squares computabiomy

function#(™ = QuadraticPowerMethod () {
&0 =y,
k=1
repeat
2k = Agk-1).
6 =1l — 2D
periodically,
z* = QuadraticEmtrapolation(5:'(7“73), e
k=k+1,
until § < e¢;

}

, :g(k));

Algorithm 6: Power Method with Quadratic Extrapolation

1. Compute the reduce@R factorizationY = QR using 2
steps of Gram-Schmidt.
2. Compute the vectorQTy ).
3. Solve the upper triangular system:
" — _ T, (k)
o ) Qy

for ( 31 ) using back substitution.
2

Algorithm 7: Using Gram-Schmidt to solve for;, and~,.

and-~z:

Y1
Y2

It is clear that the other steps in this algorithm are eii¢t) or
O(n) operations.

SinceY is ann x 2 matrix, we can do the least-squares solution
cheaply in just 2 iterations of the Gram-Schmidt algorith2d][
Thereforey; andy, can be computed i®(n) operations. While
a presentation of Gram-Schmidt is outside of the scope of thi
paper, we show in Algorithm 7 how to apply Gram-Schmidt to
solve for[y1v2]” in O(n) operations. Since the extrapolation step
is on the order of a single iteration of the Power Method, and
since Quadratic Extrapolation is applied only periodicalluring
the Power Method, we say that Quadratic Extrapolation has mi
mal overhead. In our experimental setup, the overhead ofgesi
application of Quadratic Extrapolation is half the cost sfandard
power iteration (i.e., half the cost of Algorithm 1). Thismhber in-
cludes the cost of storing on disk the intermediate dataired)by
Quadratic Extrapolation (such as the previous iterat@s}eshey
may not fit in main memory.

5.3 Experimental Results

Of the algorithms we have discussed for accelerating theezen
gence of PageRank, Quadratic Extrapolation performs thiedoe-
pirically. In particular, Quadratic Extrapolation considbly im-
proves convergence relative to the Power Method when thgdam
ing factorc is close to 1. We measured the performance of Quadratic
Extrapolation under various scenarios on theRIGEWEB dataset.
Figure 3 shows the rates of convergence whes 0.90; after
factoring in overhead, Quadratic Extrapolation reduces ttime
needed to reach a residual®@d01 by 23%?* Figure 4 shows the
rates of convergence when= 0.95; in this case, Quadratic Ex-

4The time savings we give factor in the overhead of applyirtgagolation,
and represent “wall-clock” time savings.
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Figure 3: Comparison of convergence rates for Power Method
and Quadratic Extrapolation on LARGEWEB for ¢ = 0.90.
Quadratic Extrapolation was applied the first 5 times that three
successive power iterates were available.
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Figure 4. Comparison of convergence rates for Power Method
and Quadratic Extrapolation on LARGEWEB for ¢ 0.95.
Quadratic Extrapolation was applied 5 times.

trapolation speeds up convergence more significantlynga®1%

in the time needed to reach a residualdf0l. Finally, in the case
wherec = 0.99, the speedup is more dramatic. Figure 5 shows
the rates of convergence of the Power Method and Quadratic Ex
trapolation forc = 0.99. Because the Power Method is so slow
to converge in this case, we plot the curves until a residiialol

is reached. The use of extrapolation saves 69% in time neteded
reach aresidual df.01; i.e., the unaccelerated Power Method took
over 3 times as long as the Quadratic Extrapolation methostich

the desired residual. The wallclock times for each of thesaar-

ios are summarized in Figure 6.

Figure 7 shows the convergence for the Power Method, Aitken
Extrapolation, and Quadratic Extrapolation on theSFORD.EDU
dataset; each method was carried out to 200 iterations. ahra
residual 0f0.01, Quadratic Extrapolation saved 59% in time over
the Power Method, as opposed to a 38% savings for Aitken fxtra
olation.

An important observation about Quadratic Extrapolatiothat
it does not necessarily need to be applied too often to aemeax-
imum benefit. By contracting the error in the current itetang
the direction of the second and third eigenvectors, QuiadExt-
trapolation actually enhances the convergence of futupticap

No Extrapolétion I
Quadratic Extrapolation -+

L1 residual

0.01

60 80 100 120 140
# of iterations
Figure 5: Comparison of convergence rates for Power Method

and Quadratic Extrapolation on LARGEWEB whenc¢ = 0.99.
Quadratic Extrapolation was applied all 11 times possible.
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Figure 6: Comparison of wallclock times taken by Power
Method and Quadratic Extrapolation on LARGEWEB for ¢ =

{0.90,0.95,0.99}. For ¢ = {0.90, 0.95}, the residual tolerance
e was set to 0.001, and foe = (.99, it was set to 0.01.

tions of the standard Power Method. The Power Method, as dis-
cussed previously, is very effective in annihilating ercompo-
nents of the iterate in directions along eigenvectors withlseigen-
values. By subtracting off approximations to the secondthird
eigenvectors, Quadratic Extrapolation leaves error corapts pri-
marily along the smaller eigenvectors, which the Power Métis
better equipped to eliminate.

For instance, in Figure 8, we plot the convergence when Giiadr
Extrapolation is applied 5 times compared with when it isligop
as often as possible (in this case, 14 times), to achieveidueds
of 0.001. Note that the additional applications of Quadratic Ex-
trapolation do not lead to much further improvement. In facce
we factor in the 0.5 iteration-cost of each application ob@uatic
Extrapolation, the case where it was applied 5 times endingb
faster.

5.4 Discussion

Like Aitken and Epsilon Extrapolation, Quadratic Extragian
makes the assumption that an iterate can be expressed &aa lin
combination of a subset of the eigenvectors4oin order to find
an approximation to the principal eigenvector4f In Aitken and
Epsilon Extrapolation, we assume tt#f~2 can be written as a
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Figure 7: Comparison of convergence rates for Power Method,
Aitken Extrapolation, and Quadratic Extrapolation on the
STANFORD.EDU dataset for ¢ = 0.99. Aitken Extrapolation
was applied at the 10th iteration, Quadratic Extrapolation was
applied every 15th iteration. Quadratic Extrapolation per-
forms the best by a considerable degree. Aitken suffers from
a large spike in the residual when first applied.

linear combination of the first two eigenvectors, and in Qatd
Extrapolation, we assume that*~2) can be written as a linear
combination of the first three eigenvectors. Since the apsaom
made in Quadratic Extrapolation is closer to reality, theuténg
approximations are closer to the true value of the princgigén-
vector of A.

While Aitken and Epsilon Extrapolation are logical extems of
existing acceleration algorithms, Quadratic Extrapolatis com-
pletely novel. Furthermore, all of these algorithms areegaipur-
pose. That s, they can be used to compute the principal\sgeor
of any large, sparse Markov matrix, not just the web grapheyTh
should be useful in any situation where the size and sparbitye
matrix is such that a QR factorization is prohibitively erpize.

One thing that is interesting to note is that since acceterat
may be applied periodically during any iterative process tfener-
ates iterateg®) that converge to the principal eigenvecthr, it is
straightforward to use Quadratic Extrapolation in conjiorcwith
other methods for accelerating PageRank, such as Gaudst-Bxi
2].

6. MEASURES OF CONVERGENCE

In this section, we present empirical results demonstyaiire
suitability of the Ly residual, even in the context of measuring con-
vergence ofinduced document rankings. In measuring the con-
vergence of the PageRank vector, prior work has usuallgdeain
o = ||Az® — £®)||,,, the L, norm of the residual vector, for
p =1orp=2,as an indicator of convergence. Given the intended
application, we might expect that a better measure of cgevere
is the distance, using an appropriate measure of distarteebn
the rank orders for query results induced Ay*) andz*). We
use two measures of distance for rank orders, both baseedheh
Kendall's- rank correlation measure: ti€Dist measure, defined
below, and thé&min measure, introduced by Fagin et al. in [7]. To
see if the residual is a “good” measure of convergence, we com
pf(akr)ed it to théKDist andKmin of rankings generated hyz*) and
xr .

We show empirically that in the case of PageRank computa-
tions, the L residualdy, is closely correlated with th&Dist and
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Figure 8: Comparison of convergence rates for Quadratic Ex-
trapolation on LARGEWEB for ¢ = 0.95, under two scenarios:
Extrapolation was applied the first 5 possible times in one cse,
and all 14 possible times in the other. Applying it only 5 time
achieves nearly the same benefit in this case.

Kmin distances between query results generated using the values
Az andz®.

We define the distance measukdist as follows. Consider two
partially ordered lists of URLs;; andrz, each of lengthk. LetU
be the union of the URLs im andr,. If p; isU — 11, then letr]
be the extension af;, wherer{ containsp; appearing after all the
URLs in71.5 We extendrs analogously to yield;. KDist is then
defined as:

KDiSt(ﬁ , Tz) =

[{(u,v) : 1, 75 disagree on order dfu,v), u # v}|
(luh(ul -1)

In other wordsKDist(1, 2) is the probability that; andr; dis-
agreé on the relative ordering of a randomly selected pair of dis-
tinct nodeg(u,v) € U x U.

To measure the convergence of PageRank iterations in téfms o
induced rank orders, we measured KB®ist distance between
the induced rankings for the top 100 results, averaged s@ds
test queries, using successive power iterates for thedeEWEB
dataset, with the damping facteset to 0.9 The average residuals
using theKDist, Kmin, and Ly measures are plotted in Figuré 9.
Surprisingly, the L residual is almost perfectly correlated with
KDist, and is closely correlated witmin.> A rigorous explana-
tion for the close match between the tesidual and the Kendall's
7 based residuals is an interesting avenue of future in#iiy

(41)

7. RELATED WORK

7.1 Fast Eigenvector Computation

The field of numerical linear algebra is a mature field, andymnan
algorithms have been developed for fast eigenvector caatipns.
However, many of these algorithms are unsuitable for troblgm,
because they require matrix inversions or matrix deconiposi

5The URLs inp are placed with theame ordinal rank at the end af.
6A pair ordered in one list and tied in the other is considerdisagreement.

“Computing Kendall'sr over the complete ordering of all ofARGEWEB
is expensive; instead we opt to compi®ist andKn,, over query results.

8The L, residualdy, is normalized so tha is 1.

9We emphasize that we have shown close agreement betweeand.
KDist for measuring residuals, not for distances between arpitectors.
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Figure 9: Comparison of the L; residual vs.KDist and Kmin for
PageRank iterates. Note that the two curves nearly perfeatl
overlap, suggesting that in the case of PageRank, the easilgl-
culated L, residual is a good measure for the convergence of
query-result rankings.

that are prohibitively expensive (both in terms of size grate) for
a matrix of the size and sparsity of the Web-link matrix. Feara-
ple,inverseiteration will find the principal eigenvector ofl in one
iteration, since we know the first eigenvalue. However, ipgéter-
ation requires the inversion ef, which is anO(n?) operation. The
QR Algorithm with shiftsis also a standard fast method for solving
nonsymmetric eigenvalue problems. However, the QR Alborit
requires a QR factorization of at each iteration, which is also an
O(n?) operation. Thedrnoldi algorithm is also often used for non-
symmetric eigenvalue problems. However, the strength ablsi
is that it quickly computes estimates to the first few eigares
Once it has a good estimate of the eigenvalues, it uses eters
eration to find the corresponding eigenvectors. In the PagkR
problem, we know that the first eigenvalue Afis 1, sinceA is a
Markov matrix, so we don’t need Arnoldi to give us an estimaite
A1. For a comprehensive review of these methods, see [8].
However, there is a class of methods from numerical linear al
gebra that are useful for this problem. We may rewrite thereig
problemAZ = & as the linear system of equatior{g:— A)Z = 0,
and use the classical iterative methods for linear systeiasobi,
Gauss-Seidel, and Successive Overrelaxation (SOR). Eam#
trix A in the PageRank problem, the Jacobi method is equivalent
to the Power method, but Gauss-Seidel is guaranteed to tez. fas
This has been shown empirically for the PageRank problem [2]
Note, however, that to use Gauss-Seidel, we would have torgor
adjacency-list representation of the Web graph, so that-laks
for pages, rather than forward-links, are stored consealyti The
myriad of multigrid methods are also applicable to this feob
For a review of multigrid methods, see [17].

7.2 PageRank

Seminal algorithms for graph analysis for Web-search were i
troduced by Page et al. [18] (PageRank) and Kleinberg [15] 8}
Much additional work has been done on improving these algo-
rithms and extending them to new search and text mining fdsks
6, 19, 3, 20, 11]. More applicable to our work are several pa-
pers which discuss the computation of PageRank itself [L04R
Haveliwala [10] explores memory-efficient computationd &ug-
gests using induced orderings, rather than residuals, tsune
convergence. Arasu et al. [2] uses the Gauss-Seidel method t
speed up convergence, and looks at possible speed-ups lojt-exp

ing structural properties of the Web graph. Jeh and Widonp [14
explore the use of dynamic programming to compute a large- num
ber of personalized PageRank vectors simultaneously. Otk i

the first to exploit extrapolation techniques specificaltgigned to
speed up the convergence of PageRank, with very little @aeth

8. CONCLUSION

Web search has become an integral part of modern information
access, posing many interesting challenges in develofiiagtiee
and efficient strategies for ranking search results. Onbefitost
well-known Web-specific ranking algorithms is PageRankech+
nique for computing the authoritativeness of pages usieght
perlink graph of the Web. Although PageRank is largely an off
line computation, performed while preprocessing and indg=
Web crawl! before any queries have been issued, it has beesme i
creasingly desirable to speed up this computation. Rapiaiywing
crawl repositories, increasing crawl frequencies, anddére to
generate multiple topic-based PageRank vectors for eastl are
all motivating factors for our work in speeding up PageRam¢
putation.

Quadratic Extrapolation is an implementationally simmeht
nique that requires little additional infrastructure téeigrate into
the standard Power Method. No sorting or modifications of the
massive Web graph are required. Additionally, the extrafpmh
step need only be applied periodically to enhance the cgavee
of PageRank. In particular, Quadratic Extrapolation wdrkelim-
inating the bottleneck for the Power Method, namely the sdco
and third eigenvector components in the current iterates boost-
ing the effectiveness of the simple Power Method itself.
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